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mials to smooth the data and permit the determi- 
nation of an accurate time derivative. Analysis 
shows this method to be very accurate, and the er- 
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where (12 is the variance of the th degree and SI 
is its spectrum. 

15. These accelerations contain all the spherical har- 
monic coefficients in the 16th-degree, 16th-order 
model. 
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The first issue of Physical Review Let- 
ters in 1975 contained nine theoretical con- 
tributions that were snap-judgment re- 
sponses to the dramatic discovery of new 
particles with unusual properties (1). Of 
these, only one (2) cited a previously pub- 
lished (3) anticipations of particles with the 
observed general characteristics (normal 
electromagnetic coupling and suppressed 
hadronic interaction). Such particles had 
been postulated in an attempt to supply a 
phenomenological (4) interpretation for 
the striking absence of hypercharge-chang- 
ing neutral processes in the weak inter- 
actions, as unified with electromagnetism. 
By and large, the other letters in that issue 
proposed various speculative models for 
the new particles. I have written elsewhere 
(5) of the importance of maintaining a 
clear distinction between phenomenology 
and speculation in particle physics. My 
own contribution was purely phenome- 
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nological in character. But, as I have also 
noticed, thanks to the cool responses of in- 
dividuals and audiences, phenomenology 
seems not to be enough; a speculative 
model is considered superior, or at least 
more interesting, no matter how logically 
inconsistent it may be. Accordingly, here is 
my speculation. 

An article published a number of years 
ago in these pages (6) described a pre- 
dominantly electromagnetic model of the 
subnucleonic world. It was based upon the 
concept of symmetry between electric and 
magnetic fields, as embodied in certain hy- 
pothetical spin 1/2, Fermi-Dirac particles, 
called dyons, that carry both electric and 
magnetic charges. These charges indepen- 
dently occur as fractional multiples, 2/3, 

-1/3, and -'/3, of the corresponding units of 
pure charge. All hadrons thus far known 
are considered to be magnetically neutral 
composites of dyons. The neutral com- 
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bination of three dyons, with the respective 
magnetic charges 2/3, -1/3, and -1/3, is a 
Fermi-Dirac particle and a baryon, while a 
pairing of dyon with antidyon of the same 
magnitude of magnetic charge is a Bose- 
Einstein particle and a meson. It is also 
imagined, paralleling the electric charge 
exchange mediated by weak interactions, 
that magnetic charge is rapidly exchanged 
among the dyon constituents of a magneti- 
cally neutral hadron, in such a way that 
even a quite short time average of a partic- 
ular dyon's magnetic charge would be 
zero. And it was pointed out, consistently 
with the previous remark, that conflict 
with the Fermi-Dirac statistics of dyons is 
avoided for the low-lying states of baryons, 
which seem to be symmetrical in space and 
spin variables, by invoking the physical de- 
gree of freedom of magnetic charge and 
placing these quantum numbers in a total 
antisymmetric state. Incidentally, this idea 
resurfaced later (7) with the physical iden- 
tification in terms of magnetic charge de- 
leted, and an empty, but sexy label sub- 
stituted-color. 

We have now reached the jumping-off 
point. Through the mechanism of rapid 
magnetic charge exchange, magnetically 
neutral hadronic systems acquire an ap- 
proximate dynamical symmetry that can 
be expressed as an invariance with respect 
to a group of operations on the three-val- 
ued magnetic charge indices. The group 
has the structure of the unitary group in 
three dimensions, U3. The total antisym- 
metry remarked on for low-lying hadrons 
is an invariance of these states under the 
special subgroup SU3(mag.). That such 
states are not invariant under the full 
group U3(mag.), but form one-dimen- 
sional representations of it, expresses their 
possession of the property of nucleonic 
charge, as commented on in (6). The low- 
lying mesons, which do not carry nucleonic 
charge, are invariant under the full mag- 
netic group. It is now natural to envisage 
the existence of excited states that are not 
invariant under SU3(mag.) but constitute 
members of certain multiplets, which are 
analogous to, but distinct from the SU3 
multiplets that are familiar in connection 
with the electric charge quantum numbers. 
To the extent that U3(mag.) invariance is 
an accurate one, transitions between SU3 

(mag.)-invariant and -noninvariant states 
will occur sl6wly. Hence we identify the 1- 
neutral particles f (3.1 Gev) and 1 (3.7 
Gev) as members of a noninvariant mag- 
netic multiplet. 

The eight-dimensional representation 
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magnetic analogs of isotopic spin T and 
hypercharge Y. Of the various pairs 
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(T,Y) = (0,0), (/2, -1), (1,0), it is (0,0) 
that contains no magnetically charged 
state and therefore is a natural candidate 
for the lowest-lying type of excitation. If 
both long-lived I particles are labeled 
T(mag.) = Y(mag.) = 0, they must be dis- 

tinguished by quantum numbers associated 
with the group U3(el.), in analogy with the 
well-known 1- neutral particles p?, 
o, and '. We indicate these options for 
the f, particles as p0?, c', 0'. At the mo- 

ment, I favor the view that i/(3.1) is a 
mass-degenerate superposition of p0' and 
w' (p? and w differ in mass by only 14 
Mev), while I (3.7) is identified with 0'. 
The latter assignment is attractive in the 
following way. Although transitions of 
p(3.1) and 's(3.7) to "normal" hadrons 
are largely forbidden by U3(mag.) in- 
variance, this would not inhibit the decay 
i (3.7) ->) (3.1) + normal hadrons, ex- 

cept that the same mechanism which re- 
strains the decay of 0 into pions should 
also operate here. That mechanism was 
long ago (8) interpreted within the frame- 
work of U3 invariance as signifying the 
unity of 9 rather than 8+-1 unit spin mes- 
ons. The degeneracy of p0' and w' is also 
quite important in attaining a thorough 
suppression of this coupling. Another point' 
on behalf of the >' status of / (3.7) is the 
absence of appreciable production in pro- 
ton-nucleon collisions (9), as compared 
with 4 (3.1), which seems to be produced 
by hadronic rather than electromagnetic 
interactions (10). 

There is a different argument pointing to 
the possibility that some suppression of 
quadratic y couplings with normal ha- 
drons is a general feature. Through the di- 
rect coupling of the A particles to photons, 
such a quadratic 4 interaction implies the 
decay of a A particle to a photon and nor- 
mal hadrons. This decay will occur too 
rapidly if the quadratic 4 interaction is of 
normal strength; the appropriate coupling 
constant must be roughly an order of mag- 
nitude smaller. Here is an indication that 
the internal rearrangements necessary to 
convert the magnetic states of two 4 par- 
ticles to an invariant configuration occur 
with some difficulty. A suggestion of con- 
firmatory evidence appears in photopro- 
duction experiments, which can be inter- 
preted to show that the 4-nucleon scatter- 
ing cross section is quite small on the nor- 
mal hadronic scale (11). Finally, we 
remark that 4 particles more massive than 
4,(3.1) and #(3.7) are unlikely to be as 
long-lived as the latter two. If they are 
members of a similar multiplet, the decay 
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only by the magnetic rearrangement effect. 
Or, if they are magnetically neutral mem- 
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bers of a multiplet other than (0,0), the 
large splittings anticipated within such a 
multiplet should lead to a considerable vio- 
lation of U3(mag.) symmetry, with a con- 
sequent loosening of the restraints against 
direct decay into normal hadrons. 

A speculative model, such as the one we 
have outlined, can be useful if the impres- 
sionistic picture that it paints suggests 
more sharply focused phenomenological 
descriptions. Since we have already pro- 
vided a phenomenology of the / particles 
in the areas of electromagnetic and weak 
interactions, the challenge is posed to es- 
tablish contacts with the speculative model 
that could be broadened into specific hints 
concerning, for example, the forms of sym- 
metry-breaking interactions, including 
charge and parity (CP) violation, and also 
guide the search for magnetically charged 
particles. 
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picoseconds. 

Much of the work on our basic concepts 
of how photosynthetic systems may handle 
incident light energy and convert it into 
electrochemical potential energy within the 
photosynthetic membrane has come from 
studies on photosynthetic bacteria (1-3). 

In the photosynthetic bacterium, Rho- 
dopseudomonas spheroides, an array of 
light-harvesting bacteriochlorophyll (an- 
tennas) and carotenoid molecules function 
to capture photons. The energy contained 
in the excited "antenna" molecules is fun- 
neled into a special bacteriochlorophyll 
complex generally called the reaction cen- 
ter protein. This protein in photosynthetic 
bacteria is readily isolatable from the 
membrane and from the other pigments by 
use of detergents. Current investigations in 
several laboratories reveal that the reac- 
tion center protein is comprised of four 
magnesium porphyrins (bacteriochloro- 
phyll), two hydrogen porphyrins (bacterio- 
pheophytin), a ubiquinone, and an iron 
(nonheme) moiety (4-6). The principal ab- 
sorption bands are found at 865, 800, 760, 
600, and 530 nm; the bands at 865, 800, 
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and 600 nm are generally considered to 
arise from bacteriochlorophyll absorption, 
while those at 760 and 530 nm seem to 
come from bacteriopheophytin absorp- 
tions. However, the possible existence of 
exiton interaction (2) makes a unique 
assignment of these bands difficult. 

Excitation of the reaction center bacte- 
riochlorophyll complex results in the trans- 
fer of an electron to the primary acceptor. 
Removal of the electron or the chemical 
oxidation of the reaction center bacte- 
riochlorophyll complex results in major 
changes in the spectrum. These include 
bleaching of the bands at 865 and 600 nm 
and a small hypsochromic (blue) shift of 
the 800-nm band; there is also a small opti- 
cal increase apparent at 1250 nm (7). Thus 
far no detectable optical changes have been 
identified with the primary electron accep- 
tor in photosynthetic bacteria (8). 

We have reported the bleaching of the 
865-nm band after excitation into the 530- 
nm bacteriopheophytin band (9); this in- 
dicates rapid energy transfer between the 
two reaction center chromophores. We 
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Picosecond Kinetics of Events Leading to 
Reaction Center Bacteriochlorophyll Oxidation 

Abstract. A transient absorption spectrum has been measured in Rhodopseudomonas 
spheroides R26 reaction centers. Its salient features indicate that both the bacterio- 
pheophytin and bacteriochlorophyll chromophores play a role in the excited state. Decay 
of this state yields a rise time for oxidation of the reaction center complex of about 150 
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