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One of the important achievements 
of physics in the present century is a 
fundamental understanding of the be- 
havior and the properties of matter in 
the form in which it is found on the 
earth's surface. Almost all of the mate- 
rial phenomena which occur under ter- 
restrial conditions are recognized as 
quantum mechanical consequences of 
the electric attraction between electrons 
and nuclei and of the gravitational at- 
traction between massive objects. We 
should be able,? therefore, to express 
all the relevant magnitudes which char- 
acterize the properties of matter in 
terms of the following six magnitudes: 
M, m, e, c, G, and h; M is the mass 
of the proton, m and e are the mass 
and electrical charge of the electron, 
c is the light velocity, G is Newton's 
gravitational constant, and-most im- 
portantly-h is the quantum of action 
(1). In addition we will use the atomic 
number Z and the atomic weight A 
of the elements whose properties we 
study, since Ze determines the charge 
and AM the mass of the nucleus. 

The books on atomic physics are full 
of detailed treatments of such ques- 
tions. Quantum mechanics enables us 
to calculate the sizes, shapes, and en- 
ergies of atoms and molecules; the 
varied properties of solids, liquids, and 
gases at different temperatures; and the 
emission, absorption, and scattering of 
light by matter. In this article we will 
discuss a few selected questions of this 
type. It will be done in a semiquanti- 
tative way, aiming only at the order of 
magnitude of the results, with the pur- 
pose of elucidating the essential con- 
cepts involved in such considerations 
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and demonstrating thereby the power 
and the fundamental simplicity of these 
insights. It will show how deeply the 
quantum is involved in our everyday 
experiences. It is important to realize, 
however, that such qualitative discus- 
sions never can replace actual quanti- 
tative calculations. They complement 
them and add to the understanding. 
Both approaches are necessary in order 
to understand nature. The quantitative 
treatment is needed to assure that all 
relevant aspects have been taken into 
account; the qualitative approach is 
needed to recognize the essential fac- 
tors which govern the process and to 
get direct insights into the workings of 
the laws of nature. 

The basis of our understanding is 
quantum mechanics. We start by for- 
mulating its fundamental principles in 
a simple way. Paul Ehrenfest, the fa- 
mous physicist, once said that the laws 
of nature are "simple-but subtle." 
Quantum mechanics is based on the 
wave-particle duality in the nature of 
our fundamental entities, such as elec- 
trons, photons, or nuclei. It rests on 
the de Broglie relations, which connect 
the particle momentum p and the par- 
ticle energy E with the wavelength X 
and the frequency ,o (2) 

p = E- =hw (1) 

We will make use of the following 
three basic points of quantum mechan- 
ics: 

1) If a wave motion is confined to 
a finite region in space, a series of pat- 
terns of standing waves emerge whose 
forms and frequencies depend on the 

nature of the confinement. For exam- 
ple, an electron, confined by the 
Coulomb field of the nucleus, exhibits 
a series of wave patterns, which are 
shown in Fig. 1. Similar beautiful pat- 
terns develop in any confining field 
which is spherically symmetric. The 
simpler patterns have lower frequencies 
and, on the basis of the second de 
Broglie relation, lower energies. A new 
aspect came into physics when these 
patterns were found to be part of 
nature's structure. It is the appearance 
of characteristic shapes or forms in our 
interpretation of the fundamental struc- 
ture of nature. Physics acquired a 
"morphic" character. Specific shapes 
had no justification in the classical 
physics of particles; quantum mechan- 
ics introduced this morphic trait, which 
is connected with the existence of dis- 
crete quantum states with well-defined 
properties. This is why quantum me- 
chanics was needed to explain what 
nature tells us all over: our world is 
full of distinct and characteristic forms 
and shapes, from crystals to flowers. 

2) Another property is connected 
with the confinement of a particle. The 
confined wave must have wavelengths 
comparable with or smaller than the 
linear dimensions of the confinement. 

Since a maximum wavelength cor- 
responds to a minimum momentum, a 
confined entity (for example, an elec- 
tron) must have a kinetic energy, at 
least as big as the one that corresponds 
to the maximum wavelength. The first 
de Broglie relation leads to the follow- 
ing expression for the lowest kinetic 
energy p2/2m 

h2 Ko 2mR2 (2) 

where R is the linear dimension of the 
confinement and m the mass of the 
particle. Thus an electron cannot be 
completely at rest when it is confined. 
This effect can also be expressed in 
terms of a minimum pressure which 
the particle exerts on its confinement. 
It is a pressure tending to expand the 
confining region, since such an in- 
crease would lead to a decrease of 
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kinetic energy. We will call it the 
"Schrodinger pressure," Ps, since it 
follows from the famous Schrodinger 
equation describing a particle-wave con- 
fined by a force. A particle, even at 
its lowest possible energy, will exert 
that pressure when confined. The pres- 
sure is the negative derivative of the 

energy with respect to the volume. 
Hence we get, omitting numerical 
factors, 

h2 
Ps - mR rnR5 (3) 

3) The third of our basic points is 
the Pauli principle. We express it in 
the following unconventional way: if 
more than one, say N, equal particles 
are confined in a volume V, the low- 
est kinetic energy of each particle is 
not that of a single electron (Eq. 2) 
but is higher. In fact, it is 

Ko 2' d- (N) (4) 

The length d is the linear dimension 
of a volume which is 1/N times the 

confining volume. That means that, if 
several equal particles are present, the 
characteristic confining volume for each 

particle is not the total volume but the 
volume divided by the number of par- 
ticles. Each particle has its own "pri- 
vate" volume to which it is confined 
and which determines its minimum 

energy. Hence, when N equal particles 
are confined into a given volume V, 
the Schr6dinger pressure is not N times 

larger than in the case of one particle, 
but N5/a times larger. We obtain 

h2 N 
r)/35) 

When we are dealing with particles 
endowed with a spin, such as electrons 
or protons, "equal" particles must have 
their spins equally oriented. Only parti- 
cles whose spins are all "up" or all 
"down" count as equal. Hence, a pair 
of particles with opposite spin are per- 
mitted to inhabit the same private vol- 
ume. It will be useful to note the exact 

expression of the Schrodinger pressure 
exerted by n free electrons confined to 
volume V in their lowest energy state 

(n/2 with spin up, n/2 with spin 
down) 

h'2 / \ 5/3 
Ps = 1/ (3r2)2/3 (5a) 

The conventional way to formulate 
Pauli's great discovery uses a different 
formulation: not more than one parti- 
cle of a given kind and spin is allowed 
to occupy a given quantum state. It is 

easy to show that our formulation is 
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The countervailing effects are balanced 
if this energy is a minimum. It is easily 
seen that the minimum is reached when 
the kinetic energy is equal to one-half 
of the absolute amount e2/R of the 
potential energy. This is an example of 
the well-known virial theorem. This 
ratio between kinetic and potential 
energy is valid whenever the attractive 
force has a 1/R dependence and when 
relativistic effects can be neglected. We 
will use this theorem later when we 
deal with gravitational forces in stars. 

Thus the electric attraction balances 
the Schrodinger pressure when Eq. 6 
is a minimum, which occurs when 

Fig. 1. Patterns of electron distributions in 
spherically symmetric fields. These are 
photographs of models. [From Weisskopf 
(10)] 

equivalent. If the Pauli principle did 
not hold, all electrons would be al- 
lowed to be in the lowest quantum 
state. That would mean that the ground 
states of all atoms would be similar: 
the atomic electrons would all assemble 
in the lowest and simplest quantum 
state. All atoms would exhibit essen- 
tially the same properties, a most un- 

interesting world. We owe the variety 
of nature largely to the exclusion prin- 
ciple. 

Atomic, Molecular, and 

Nuclear Relations 

We now apply our considerations to 
the simplest atom, the hydrogen atom. 
Here an electron is confined by the 
electrostatic attraction of the proton. 
The electron wave may assume one of 
the different patterns of Fig. 1. Let us 
see what determines the size and en- 

ergy of the lowest pattern. A balance 
is established between two countervail- 

ing effects-the electric attraction and 
the Schrodinger pressure toward ex- 

pansion. In terms of energy this bal- 
ance expresses itself as follows: the 
total energy of the lowest state is the 
sum of the potential energy (-e2/R) 
of the attraction and the kinetic energy 
K0 

e2 ha 
E= - + (6) r 2m',2 

Thus we have determined the two 
fundamental magnitudes of atomic 

physics, the Bohr radius, a0, which gives 
the size of the atom, and the Rydberg 
unit, Ry, which determines the energy 
by which the electron is bound to the 

proton. The hydrogen atom is the 

simplest of all atoms. Still its size and 

binding energy are characteristic for 
all atoms. These two values establish 
the order of magnitude of all atomic 
dimensions and binding energies. 

When two atoms come close to- 

gether to a distance comparable to 
their size, the total energy changes 
as function of the distance, because of 
the ensuing deformation of the elec- 
tronic orbitals. A bond is formed if 
the energy decreases to a minimum 
value at the bonding distance; no bond 
is formed if the energy increases. The 
former happens in most cases-in par- 
ticular, when the spin directions of 
the outer electrons are opposed so that 
a pair of them can form a common 
orbital. Then both of them are at- 
tracted by either nucleus, and a bind- 

ing results. 
The forming of a common orbital 

(homopolar bond) is not the only 
mechanism that leads to a lower total 

energy when atoms approach each 
other. Another simple mechanism 
(ionic bond) occurs when one of the 
atoms has a loosely bound electron and 
the other has a strong affinity for an 
additional electron. The atoms then 

exchange an electron when brought 
together and the ensuing opposite ions 
attract each other and form a bond. 
The ions, however, are kept from 

penetrating each other by the increased 

Schrodinger pressure which occurs 
when the two electron clouds try to 

occupy the same volume. 
There are many other mechanisms 
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/12 m?let 
r= = 

ao, E= --- Ry 
me2 - 2h - (7) 



that lead to bondings between atoms. 
All cases can be described as the form- 

ing of a common quantum state of the 
combined electrons and nuclei under 
the influence of their mutual electric 
attractions and repulsions, a quantum 
state whose energy is lower than the 
sum of the energies of the separated 
atoms. 

We therefore expect that most atoms 

join with others to form molecules; at 
lower temperatures we expect the mole- 
cules or atoms to aggregate to solids 
and liquids. In all these cases the dis- 
tance between neighboring atoms will 
be of the order of the atomic sizes, a0, 
and the binding energies of the order 
of atomic energies; we expect, how- 
ever, the binding energy to be some- 
what smaller than a Rydberg, since 
the molecular bonds or the bonds in 

liquids and solids represent only an 

adjustment of the electron waves to the 
new situation of neighboring atoms. 

We now express our knowledge of 
atomic and molecular physics in the 
form of four semiquantitative rela- 
tions referring to the ionization energy 
I of an atom (the energy necessary to 
remove one electron), the radius R of 
an atom or a simple molecule, the dis- 
sociation energy D of a molecule, and 
the binding energy B of an atom or 
molecule in a solid or liquid. These 
relations contain certain "fudge fac- 
tors" a, f, 8/, and y whose values do 
not differ from unity by more than a 
factor of 10; they are given here with- 
in large limits only. Also, these formu- 
las apply only to very simple atoms, 
molecules, or solids and certainly not 
to those complicated substances which 
we find in organic matter. 

I = aRy 
R = fao 
D = pRy 
B = yRy 

1 > a > 1/4 

6>/>1 
0.5 > p > 0.2 
0.3 > > 0.1 (solids) 
0.1 > y > 0.05 (liquids) (8) 

This is all we will need to know about 
atomic, molecular, and solid state 

physics. 
In order to show the strength of 

these semiquantitative considerations 
we estimate the size and the energy, 
not of atoms but of nuclei. In nuclei, 
the constituents, protons and neutrons, 
are held together not by the Coulomb 
force but by the nuclear force. Figure 
2 shows a rough sketch of the nuclear 
force potential as a function of the 
distance, neglecting the dependence on 
spin and symmetry. It also contains 
(dashed line) the electrostatic poten- 
tial that fits the attractive part of the 
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Fig. 2. Potential of the force between two 
nucleons. The solid curve is an approxi- 
mate rendition of this potential. The exact 
value depends on the relative spin direction 
of the nucleons and on the symmetry of 
the quantum state. The dashed curve in- 
dicates the electrostatic potential between 
two particles of opposite charge, 3.3 times 
the charge of the electron. [From Weiss- 
kopf (10)] 

nuclear potential best. It turns out that 
two nucleons attract each other, at 
least in that essential region where the 
attraction is important, as if they had 

opposite charges g of about 3 to 3.3 
units. (The effective square of the 

charge, g2, is about ten times larger 
than e2.) The size and energy of a 
bound nuclear state should be of the 
order of the corresponding Bohr radius 
and Rydberg. We get the nuclear Bohr 
radius aN and the nuclear Rydberg RYN 

by replacing e2 by g2 10e2, and the 
electron mass m by the proton mass 
M 

aN - M ao/20.000 
Mg2 

RyN - Mg- 200.000Ry 

Indeed, these are the dimensions and 

energies of nuclei. So much about 
nuclear physics. 

Density and Hardness of Matter 

Armed with this knowledge we are 
able to answer a number of questions 
of the type, Why just so big?, which 
may occur to anyone when contemplat- 
ing nature. A hiking trip into the 
mountains is most conducive to posing 
simple questions of that kind. Some of 
those which will be answered in this 
article are (3) 

1) Why is a piece of rock as heavy 
as it is? 

2) Why is a rock or any other solid 
as hard as it is? 

3) Why are the mountains as high 
as they are? 

4) Why do we see solid or liquid 
objects clearly and distinctly through 
the atmosphere? 

5) Why is the sun as big as it is? 
We now turn to the first question. 

What is the density of compact matter 
like metal or rock? It is the weight per 
unit volume, or the weight of the atom 
or molecule divided by the volume 
which it fills. In compact matter atoms 
or molecules are contiguous; hence 
the density p is roughly given by 

AM 

f3 4a' 14 
(9) 

where A is the atomic or molecular 

weight, M the mass of the proton, a0 
the Bohr radius, and / one of the fac- 
tors defined in Eqs. 8. This factor de- 

pends somewhat on A; the larger A, 
the larger the atomic or molecular 
radius. As a rough approximation f = 
1.5A1/5 serves as a good fit, although 
there are large fluctuations around this 
value, and these fluctuations enter into 
our formula in the third power. We 
then obtain the numerical result 

p 0.8A/5 g/cm3 

as an indication of the density of com- 

pact matter, roughly ranging between 
1 and 10 g/cm3. 

We now deal with the second ques- 
tion: the hardness of solids. Nothing is 

infinitely hard; every solid can be com- 

pressed if enough pressure is applied. 
The resistance against compression is 

expressed in terms of the "bulk mod- 
ulus" C which is the ratio between the 
pressure P and the relative change of 
volume AV/V; C = PV/AV. It has the 
dimension of a pressure; indeed, a 

pressure of n percent of C is required 
to reduce the volume by n percent. 
Most of the ordinary solids have bulk 
moduli between 1011 and 1012 erg/cm3, 
which means that 105 to 106 atmo- 
spheres are needed to reduce appre- 
ciably the volume of a piece of metal 
or rock. There must be something 
fundamental about this fact, and we 
should be able to express this number 
in terms of our fundamental constants. 

Let us look at a metal as an example 
of a solid. It consists of a lattice of 

positive ions with a lattice distance d 
of a few Bohr radii. In this lattice 
negative electrons are moving about 
almost freely as an "electron gas." In 
simple metals like sodium, copper, and 
silver there is one electron per ion in 
the gas, and the ions carry one posi- 
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tive charge. We now apply the concept 
of Schr6dinger pressure to the electron 
gas, and remember that the pressure is 
determined by the number n of elec- 
trons in a given volume V according to 
Eq. 5a. Since we have one free electron 
per atom, the ratio n/V is equal to the 
reciprocal atomic volume, that is, the 
total volume of a piece of metal di- 
vided by the number of atoms. Clearly 
the cube root of the atomic volume 
d fao must be of the order of an 
atomic size. The values of f for copper, 
silver, and sodium are 4.29, 4.86, and 
6.45. The Schridinger pressure of the 
electron gas in these metals can be 
computed from Eq. 5a and one obtains 
Ps =3.8, 2.1, and 0.50 in units of 
1011 erg/cm3, which are pressures of 
the order of 105 atmospheres. Actually 
these figures are underestimates (ex- 
cept in the case of sodium) since the 
deviations from a free electron gas 
have an effect similar to that of a 
smaller free volume. 

This enormous pressure does not 
drive the metal apart because it is 
counteracted by the electric attraction 
between the ions and the electrons. 
The two effects are balanced in the 
metal under normal conditions. If one 
compresses the metal one acts against 
the Schrodinger pressure. We therefore 
expect the resistance to compression to 
be of the order of that pressure. Hence 
the bulk modulus must be of the same 
order as the Schrodinger pressures cal- 
culated above (4). Indeed the observed 
bulk moduli of the three metals are 
14, 11, and 0.65 in units of 1011 
erg/cm3. In the case of copper and 
silver those values are higher than the 
calculated ones. In these elements the 
ions fill a good part of the space and 
resist compression themselves; further- 
more, the effective volume of the elec- 
tron gas is considerably smaller than 
the atomic volume. These two circum- 
stances add to the resistance against 
compression. In sodium, the free elec- 
tron gas is a good approximation. 

Let us now see how to determine the 
bulk modulus of a mineral like rock 
salt. It consists of a lattice of chlorine 
and sodium ions with a distance d= fao 
between closest neighbors and f = 5.32. 
The oppositely charged ions are kept 
apart by a Schr6dinger pressure which 
arises when the electron clouds of the 
ions begin to overlap. Even a relatively 
small overlap produces a rather large 
pressure because of the high electron 
density in the clouds. Under normal 
conditions this pressure Ps is held in 
equilibrium by the electric attraction 
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Fig. 3. The sinking of the mountain by the 
amount A corresponds to the displacement 
of a layer of thickness A from the top into 
the ground, and to a plastic flow of a com- 
parable volume in the ground. 

of the ions, and that gives us a means 
of calculating it. The electric energy 
per ion is known to be - je2/v'3, 
where v = d3 = /ao3 is the atomic vol- 
ume and ju = 0.88 is the so-called 
Madelung constant. This energy gives 
rise to a counterpressure Pe which is 
the negative derivative with respect 
to the volume: - Pe = 1/3jue2/f4a04. It 
balances the Schrddinger pressure, and 
therefore we get Ps =- Pe. With the 
above value of f we obtain Ps = 1.07 X 
1011 erg/cm3. Again we argue that in 

compression we have to counteract the 
Schrbdinger pressure, which in this case 
increases strongly with decreasing lat- 
tice distance d, since the overlap be- 
tween the electron cloud is a steep 
function of d. Hence the bulk modulus 
will be of the order of but somewhat 
larger than Ps (4). Indeed the actual 
value in rock salt is 2.4 X 1011 erg/cm3. 

We now can express the bulk modu- 
lus of any simple solid in terms of our 
fundamental constants. It is of the 
order of 

C~F =_-F e 
ao3 h8 

where F is a numerical constant, which 
contains the factor f with a rather high 
negative power. Roughly speaking, the 
value of the bulk modulus corresponds 
to an atomic energy per atomic volume, 
that is, a few electron volts per a few 
angstroms cubed. 

Height of Mountains, Length of 

Water Waves 

We now turn to the third question: 
Why are the mountains as high as they 
are? We simplify a mountain as a block 
of silicon oxide resting on a plane sur- 
face composed of the same material 
(see Fig. 3). The mountain will be too 
high to be supported by the base when 
the weight of the block is so large that 
the base matter starts to flow; the 

mountain will sink when plastic de- 
formation sets in. 

Let us call H the height of our block 
at which it will begin to sink. Then H 
will be the maximum possible height 
which a mountain can reach. On a 
planet where the tectonic and vulcanic 
activities are high, as on the earth, the 
mountains will be of the same order of 
magnitude as H but somewhat smaller 
(5). 

It should be pointed out that this 
problem is different from the previous 
one, which dealt with the compressi- 
bility of matter. The weight of the 
mountain indeed compresses the soil, 
but this compression does not reduce 
the height of the mountain in any ap- 
preciable way. There is no compression 
involved with plastic flow; it occurs 
without any important change in den- 
sity. The energies involved in it are 
less than in compression. 

At what height H will the mountain 
begin to sink into the bottom? It will 
happen at that height at which the en- 
ergy gained by letting the mountain 
sink is equal to the energy necessary 
to engender plastic flow. This energy 
is comparable to and probably some- 
what lower than the energy necessary 
to melt the rock. For our purposes, 
we will set these energies equal. The 
amount of matter to be "liquefied" is 
roughly the same as the amount of 
mountain matter which sinks into the 
ground. Hence, roughly speaking, the 
amount of gravitational energy gained 
by lowering matter from a height H 
must be equal to the liquefaction en- 
ergy of the same amount of matter. 
The calculation can be done for each 
molecule separately. The mass of the 
molecule is A proton masses, where A 
is about 50, the atomic number of 
silicon oxide. 

We then can write 

AMHg = E1 

Here g is the gravitational acceleration 
on the earth and E1 is the liquefaction 
energy per molecule. The latter energy 
must be a small fraction of the binding 
energy B of the material: El = B. After 
all, in the process of liquefaction the 
binding is not broken, only its direc- 
tional stiffness is removed. How big is 
~? We recall that melting of 1 g of 
ice costs 80 calories; the energy neces- 
sary to vaporize ice amounts to an 
additional 540 calories. Thus the fac- 
tor ~ for ice is roughly 0.1. In metals 
and minerals this factor is of the order 
of 0.05. We therefore put El-=B= 
$yRy and with =0.05 and y=0.2 
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we get for the maximum height of a 
mountain 

H_ =/y -y 26 km (10) 

The actual value is of the order of 10 
km. This result is quite reasonable con- 
sidering the fact that the energy neces- 
sary to produce plastic flow should be 
somewhat less than the liquefaction 
energy. 

The formula for H is not yet in the 
form it should be in. The constant g 
is not really a fundamental number, 
and it can be expressed in terms of 
Newton's constant G and the number 
NE of nucleons (protons and neutrons) 
in the earth, as follows: 

GNis,M 
g - RE2 

where RE is the earth's radius. Since 
the earth consists of "compact" matter 
(the molecules touch each other), RE 
can be expressed in terms of the molec- 
ular or atomic radius R of SiO2 or 
iron, the two substances which are 
typical for the composition of the 
earth. The molecular weight of SiO2 
fortunately is close to the atomic weight 
of iron (A 50). Using Eqs. 8 we put 

NEv/3 NE 3 
R~E A R -- A fao 

We would like to express the final 
result not in terms of centimeters, but 
in terms of the only dignified unit of 
length in the atomic world: the Bohr 
radius. Putting everything together we 
obtain the maximum height of moun- 
tains 

H a 1) 
ao ac~ Ncv, A P/3 

Here a is the fine-structure constant 
and aG is what one could call the gravi- 
tational fine-structure constant 

e2 
a =h-- = 137-1 

r 

= G- t 5.88 X 10-39 
he 

where M is the mass of the proton. 
With the values -=0.05, y=0.2, and 
/=3, this expression gives the same 
result as before: H/ao 4.7 X 1014. 
The ratio a/ca= 1.24X 1036 is the 
ratio of the electric and gravitational 
forces between two protons. This ratio 
enters in the above expression because 
the maximum mountain height results 
from a competition between the rigid- 
ity of rock and the force of gravity. 
The former is an effect of the electric 
forces between electrons and nuclei. Of 
course, the enormously large value of 
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aC/aG is compensated by the large nu- 
merical value of NE,3. 

Equation 11 leads to the approxi- 
mate conclusion that the height of 
mountains on the other planets is re- 
ciprocally proportional to Np13 where 
NV, is the number of nucleons in the 
planet. If the rock constitution and 
geologic activity were the same as on 
the earth, the mountains would be 
about four times higher on the moon 
and about twice as high on Mars. The 
mountains on Mars indeed are about 
twice as high. The mountains on the 
moon, however, are only a little higher; 
they have not reached their maximum 
possible height because there is very 
little tectonic activity on the moon. One 
may also speculate as to the size of a 
planet on which the height of the 
mountains could be about the same as 
the radius. Such an object would be 
able to maintain in its rigid state a non- 
spherical shape, in spite of gravity. It 
can easily be seen from our relations 
that the maximum radius for this ob- 
ject is the geometric mean between the 
maximum mountain height on the earth 
and the earth's radius, that is, roughly 
300 km. It is comforting to observe 
that the linear size of Deimos-a moon 
of Mars that is definitely not spheri- 
cal-is smaller than this; it is of the 
order of 20 km. 

Let us look for a moment at a seem- 
ingly very different natural phenome- 
non: water waves on the surface of a 
lake. When a light breeze starts to 
blow over a quiet water surface, the 
wavelength X of the initial waves is of 
the order of a centimeter (X is the 
actual wavelength divided by 27r). It 
would lead too far to enter into the 
physics of wave production; suffice it 
to say that the wind transfers its en- 
ergy first to those waves whose propa- 
gation velocity is lowest. There is a 
certain wavelength X, for which the 
propagation velocity reaches a mini- 
mum, and this is roughly the wave- 
length that is first excited by wind. The 
minimum occurs because for larger 
waves the effect of the gravitational 
force increases, whereas for smaller 
ones the effect of the surface tension 
increases; both act as a restoring force 
in the wave oscillations. Hence the 
minimum wave velocity represents a 
balance between surface tension and 
gravity (6). 

The expression for the velocity v of 
water waves is given by 

v=gx + Xp)" 

where X is the wavelength, a, is the 
surface tension, and p is the density 
of water. The minimum velocity is 
reached when 

gp 

The surface tension o is an energy per 
unit area. Let us express it in terms of 
the surface energy Es contained in a 
surface area which involves only one 
surface molecule. This area is roughly 
Tr times the square of the radius fao 
of the molecule; hence ao- Es/7rf2ao2. 
The surface energy E, comes from the 
fact that the molecule at the surface is 
somewhat less strongly bound than a 
molecule in the bulk of the substance. 
The energy E, is the difference between 
the binding energy B in the bulk and 
the binding energy B, at the surface: 
E-=B--B. Let us put ES-='B; in 
simple liquids E, is about one-sixth of 
B. That relation is plausible if one 
considers the binding between mole- 
cules as six rectangular bonds origi- 
nating at each molecule. At the surface 
one of them is inoperative. We then 
can write or = E/rrf2ao2 = ~'XRy/7rf2a02 
and p = 3AM/44rf'aO3, and we get 

4 Ryao 
3 7'AMg 

A comparison of this expression with 
Eq. 10 shows the surprising result that 
(X/ao)2 2 H/aO, apart from the dif- 
ference between j' and ~ (1/6 and 
1/20) and the factor - /. Also, the 
values of y and M are somewhat 
different in water and silicon ox- 
ide. The size of the wavelets on the 
lake is of the order of the square root 
of the height of mountains, if expressed 
in units of Bohr radii! This intriguing 
result comes from the fact that the 
surface tension, expressed in suitable 
units, is a fraction of the binding en- 
ergy, of the same order of magnitude 
as the liquefaction energy. The length 
X also is the result of a competition 
between atomic electric forces and 
gravity. 

Visibility of Compact Matter 

The fourth question-Why do we 
clearly see compact matter?-has to do 
with the interaction of light with mat- 
ter. Light is an electromagnetic wave, 
and the electric part of the light field 
is the decisive one in affecting the 
atoms. In general the frequency of 
visible light is below the resonance 
frequencies of simple atoms and mole- 
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cules. These resonances lie mostly in 
the ultraviolet. Under these conditions, 
the effect of the oscillating electric 
light field on the atoms can be deduced 
from the effect of a static field. A static 
field e induces a dipole moment D in 
an atom 

D = p6 (12) 

The proportionality constant p-the 
polarizability-has the dimension of a 
volume. 

We estimate the order of magnitude 
of p by the following simple considera- 
tion. Assume the atom is hydrogen, 
with a proton as a nucleus and an elec- 
tron cloud of radius R. Let us estimate 
how strong a field is needed to dis- 
place the electron cloud relative to the 
nucleus so much that the nucleus is 
moved to the rim of the cloud. The 
dipole moment would then be D = eR. 
The force which would drive the nu- 
cleus back to the center is e2/R2; hence 
we would need an electric field e = 
e/R2 to hold the atom in this unusual 
state with the nucleus at the rim. If 
we assume that Eq. 12 is still right- 
this will be only approximately true- 
we get 

Ip De = 3 R(13) 

We find that the polarizability p is of 
the order of the volume of the atom, 
a result which approximately holds also 
for more complicated atoms. 

Let us now study what the effect of 
an incident light wave would be on an 
array of atoms arranged such that the 
average distance between the nearest 
neighbors is d. The value of d may be 
similar to or larger than 2R. Each 
atom will acquire a dipole moment D = 
Po0 where 0O is the electric field 

strength of the light. The dipoles pro- 
duce electric fields for themselves. 
What is the average strength 46 of 
these secondary fields within the mate- 
rial? There is a well-known relation 
which says that the field 6s produced 
by a uniform dipole density P is 4s= 
47rP. In our case the dipole density is 
given by P= D/d3 so that we get 

= 4ir(p/d')Eo 

The secondary fields correspond to 
the secondary light emitted by the 
atoms when the incident wave excites 
them to perform vibrations. The sec- 
ondary light waves interfere with the 
incident one, causing certain modifica- 
tions. The incident light wave will be 
strongly modified by the secondary fields 
only if 46 - 60, that is, if 47rp/ld - 1 
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or if d - 2R. Thus only compact mat- 
ter, where the distance between atoms 
is of the order of their diameter, 
strongly modifies incident light; the 
index of refraction (its real or imagi- 
nary part) differs from unity by an 
appreciable amount. These modifica- 
tions manifest themselves in refraction 
or absorption within the first few wave- 
lengths when light enters matter. They 
make compact matter plainly visible, 
in contrast to dilute matter such as 
normal air or colored vapors, where 
refraction is minimal and absorption 
takes place only over distances of many 
wavelengths. 

The plain visibility of compact mat- 
ter can be traced to the fact that the 
light field and the force that keeps the 
atoms together are both of the same 
nature, namely, electric. Let us see 
what would happen if the binding in 
the atom were caused by a different 
and stronger force. Let us assume, for 
example, that the charge responsible 
for the binding is e' > e, whereas the 
electric charge is still e. Then the 
polarizability of an atom would be 
smaller-the atom is stiffer-and we 
would get p (e/e')2R3. The second- 
ary field Es would be ~ - 47r(e/e')2 
(R/d)3eo, and even in compact mat- 
ter 4 would be smaller than o0. Com- 
pact matter would be rather transparent 
to light. There is an example of such 
a situation in nature: nuclear matter. 
As we saw earlier, the nuclear attrac- 
tion is about ten times stronger than 
the electric force between two charges. 
Indeed, light is scattered rather weakly 
when it passes through nuclei; it would 
have to penetrate many wavelengths 
into nuclear matter before being scat- 
tered or absorbed appreciably (7). 

Size of a Star 

We now come to our last question: 
Why is the sun as big as it is? One of 
the most amazing results of modern 
astronomy is the fact that the masses 
of stars with not too abnormal proper- 
ties must lie between rather narrow 
limits, within a factor of a few hun- 
dred. The number N* of nucleons in 
a star is given by a very simple com- 
bination of our fundamental constants 

N* = sNo, No =( i) = 2.21 X 10 

(14) 
Here s is a numerical factor which lies 
between 0.1 and - 60. Indeed, the 
solar mass Mo is equal to NOM within 
a factor of 2: MO = 0.54NoM. 

We are now going to derive this 
amazing relation. We assume with good 
justification that a star consists mostly 
of hydrogen gas, that is, of N* protons 
and electrons. In our highly simplified 
arguments we will consider a star to 
be a sphere of radius R with uniform 
density and temperature. The tempera- 
ture T is assumed to be high enough 
that the hydrogen atoms are ionized; 
electrons and protons are considered 
to be moving as free particles. It is 
gravity which keeps them together in 
the sphere. In order to connect the 
temperature with the effect of gravity 
we will make use of the previously 
mentioned virial theorem. It tells us 
that the time average of the kinetic 
energy (EK) must be equal to one-half 
of the absolute amount of the time 
average of the potential energy (Ep). 
The gravitational potential energy is 
always a negative quantity; when 
masses get together, the potential en- 
ergy drops. The virial theorem con- 
tains the absolute amount of the poten- 
tial energy, which is a positive quantity 

EK = 1/2 EP (virial theorem) (15) 

The kinetic energy of the electrons 
and protons is mostly due to thermal 
motion. The equipartition theorem tells 
us that it is (3/2)kT per particle, where 
k is the Boltzmann constant. The total 
kinetic energy should then be 3N*kT. 
The gravitational potential energy of 
two masses M at a distance r is 
- GM2/r. In the average the distance 
between protons in the star is of the 
order of R and there are N*2 pairs of 
protons. (The potential energy of the 
electrons is negligible because of their 
small mass.) Hence the order of mag- 
nitude of the potential energy is 
-GM2N*2/R. The virial theorem then 
becomes 

GM2N 2 
3N*kT ,~ /2 N 

R (16) 

We can draw several interesting con- 
clusions from Eq. 16. The total energy 
E (the sum of the kinetic and potential 
energies) of the star, according to Eq. 
15, is equal to the negative of the 
kinetic energy 

GM2N*2 
E = -EK =-3N*kT- -1/2 

GM 

(17) 

The star, being hot, loses energy by 
radiation into the void; its energy must 
steadily become more negative. A 
lower energy means a higher tempera- 
ture and also a smaller radius or 
stronger compression, according to Eq. 
17. The loss of energy makes the star 
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hotter! The specific heat of a star is 
negative. 

This paradoxical result is connected 
with another paradox of gravity. 
Imagine that a space traveler in a 
rocket going around the sun pulls a 
"brake" (loss of energy). One way of 
doing it would be to open an immense 
parachute which exerts a small fric- 
tional force in the dilute gas of meteor- 
ites or other interstellar matter. As a 
consequence of this braking action the 
rocket will move faster and not slower! 
The reason, of course, is that any 
change in kinetic energy is necessarily 
connected with a double change of 
potential energy in the opposite direc- 
tion (virial theorem). The braking ac- 
celerates the rocket by making it fall 
toward the sun, as it were. This is in 
complete analogy to the fact that en- 
ergy loss by radiation heats up the star; 
the concomitant compression corre- 
sponds to the falling toward the center. 

Let us now transform the virial 
relation (Eq. 16) to a form which is 
more convenient. It is more practical 
to replace the radius R with another 
length d, which is equivalent to the 
average distance between neighboring 
protons in the star. It is the linear 
dimension of the volume which each 
proton (or electron) occupies for it- 
self 

d = R/(N*)1/3 (18) 

Then, after we have divided by N*, 
Eq. 13 becomes 

3kT -,,2 GM2 (N*)2/8 
d 3kT Y2 d =GM2 

p/2 Gh (N*)2 /s h 

Here the left side is the kinetic energy 
per proton and the right side is half 
the amount of the potential energy per 
proton. This can be written in the 
simple form 

whe No is te n r d (19) 

where No is the number defined in 
Eq. 14 and f is a numerical constant 
of order unity which, in this rough 
approximation, will be dropped hence- 
forth. 

We return to the fact that a star 
constantly loses energy by radiation, 
and that this causes a rise in tempera- 
ture T and a decrease in size d. There 
is a limit to this rise, however. If 
the temperature reaches a certain value 
which we may call the "nuclear igni- 
tion temperature," Tig, the nuclear fire 
starts burning, hydrogen is trans- 
formed to helium. Here we meet a 
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similar paradox. The nuclear fire does 
not raise the temperature, it keeps 
the star cool. The reason is simple 
to see. The nuclear reactions replace 
the energy lost by radiation, and the 
total energy no longer diminishes but 
stays constant and so does the tem- 
perature (see Eq. 16). The star func- 
tions like a thermostat: if the nuclear 
energy production becomes too large 
the star expands, which cools it down 
and reduces the nuclear fire. 

We are now able to determine a 
minimum value for the mass of a 
star. It is connected with another fac- 
tor which limits the rise of the tem- 
perature by radiation loss. It is the 
Schrodinger pressure of the electrons 
in the star. When the distance d be- 
tween electrons becomes small, the 
Schrodinger pressure rises and may 
become equal to the gravitational pull; 
then the compression ceases and so 
does the increase in temperature. In 
other words, the matter of the star 
resists compression essentially in the 
same way in which a chunk of metal 
or any other solid material resists it, 
that is, by the effect of the Schrodinger 
pressure of the electrons. 

In the star the effect manifests itself 
in the following way: with decreasing 
distance d between electrons the mini- 
mum kinetic energy (Eq. 4) of the 
electrons increases; this energy must 
be provided for by the gravitational 
energy gained when the star contracts. 
Hence that gain can no longer be 
used to increase the temperature. In- 
deed, there comes a moment when 
the contraction ceases altogether since, 
according to the Pauli principle, the 
minimum kinetic energy of the elec- 
trons increases as 1/d2 (see Eq. 4), 
whereas the gravitational energy gained 
by contraction increases as only 1/d 
(8). We therefore obtain a condition 
for stopping the contraction and tem- 
perature increase even if no nuclear 
reactions take place. They will stop 
when the gravitational energy per elec- 
tron is of the same order as the mini- 
mum kinetic energy (Eq. 4). The 
gravitational energy per electron is 
the same as that per proton, and its 
order of magnitude is given by the 
right side of Eq. 19. We therefore get 
a condition for the distance dstop at 
which contraction stops 

(N* 2/3 hC h2 
INo dstop 2m(dstop)2 

or (the factor 2 is omitted) 

1 N* 2/3 mc 

dostop \Noo h 

In principle, this determination of 
dstop is the same as the determination 
of the Bohr radius a0 of the hydrogen 
atom from Eq. 6. There, it was the 
balance between the electric attraction 
between proton and electron and the 
Schrodinger pressure which deter- 
mined a0; here, it is the balance be- 
tween the gravitational attraction of 
all N* protons and the Schrodinger 
pressure which determines dstop. 

The maximum temperature Tmax 
which the star can reach before its 
contraction is stopped by the Schro- 
dinger pressure of the electrons is 
given by Eq. 19, which connects d 
with T 

;kT (N* 2/3 hc N*\4/3 c2 max 
No dstop No 

(20) 
where m is the electron mass. What 
is the minimum number N* of pro- 
tons in a star? We understand by the 
term "star" an assembly of matter 
that produces nuclear reactions in the 
interior in order to replace its radiation 
losses and thus attain a certain degree 
of stability. The minimum value of 
N* must be such that the maximum 
reachable temperature is higher than 
the ignition temperature Tig of nuclear 
reactions. The ignition temperature is 
the one for which the kinetic energy 
e of the protons is high enough that, 
in a collision between two protons, 
the two particles are able to merge 
in spite of the electrostatic repulsion. 
Quantum mechanics teaches us that 
energy E is 

7r2 Me4 
e 2 = 123,000 ev 

The temperature Tig necessary to at- 
tain this corresponds to 

kTig = ne 

where 7 is a numerical factor smaller 
than unity since the Maxwell distribu- 
tion always provides for protons of 
higher energy than kT (9). Clearly 
Tmax must be larger than Tig, and we 
get from Eq. 20 

N* /Ve /4 ra M e' \8/4 
No > c2 \2 mhaca v 

The number of protons in a star must 
be at least 0.58r3A/ times the number 
No. A more accurate calculation gives 
0.1 N as the lower limit. Thus, our 
sun with N* = 0.54No is not much 
larger than the minimum. It is a rela- 
tively small starlet. 

Is there an upper limit of N*? 
There is indeed, and it comes from the 
fact that a heavy star gets very hot 
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and the ensuing radiation pressure 
makes it unstable. In order to deter- 
mine the upper limit of N* we must 
amplify our previous considerations in 
two respects. 

First, the kinetic energy within the 
star is not only the energy of the 
motion of protons and electrons; light 
quanta also have "kinetic" energy- 
it is ho per quantum-and it appears 
as the energy of the thermal radiation 
in the star. We will soon see that this 
energy is not an important contributor 
if N*/No is smaller than or compara- 
ble to unity. Therefore, it was justified 
to forget it in our previous considera- 
tions. 

Second, the virial theorem in the 
form of Eq. 15 is only correct for 
nonrelativistic particles. If some of the 

particles are extremely relativistic, as 
light quanta are, we must write instead 
of Eq. 15 

EK = AIlEp (29) 

where A is between /2 and 1. If most 

particles are extremely relativistic, the 
factor A becomes unity. Since the po- 
tential energy is negative, the condition 
A 1 implies that kinetic and poten- 
tial energy are equal and opposite; 
the total energy, therefore, would be- 
come zero. This would mean that the 
star would not hold together (a bound 

system must have negative total ener- 

gy). This is another way of saying 
that the light pressure destabilizes the 
star if the radiation energy is much 

larger than the kinetic energy of the 

protons and electrons. 
Let us now figure out when the 

radiation energy becomes larger than 
the kinetic energy of the particles. 
The latter is of the order of kT per 
particle; the former can be determined 
from the well-known Stefan-Boltzmann 
law which says that the radiation 

energy density u at a given temperature 
is proportional to the fourth power 
of the temperature 

u = (kT)4, a=f (23) 

The proportionality constant r is sim- 

ply (hc)-3 apart from a constant j 

very near to unity. We will put f = 1. 
A simple way of understanding this 

relation is to recognize that, in thermal 

equilibrium, the average energy of the 

light quanta must be kT, and that 
there is about one quantum in a volume 
whose linear dimensions are of the 

order of the wavelength A of these light 
quanta. Hence the energy density would 
be u = kT/X3, and hclX = kT, which 
corresponds to Eq. 23. 

The radiation energy Er in the star 
is the energy density multiplied by the 
volume 

(kT)447c 3 

In order to keep the star stable, the 
radiation energy must not be too big 
compared to the kinetic particle en- 

ergy 3N*kT, or 

Er (kT\s R, (_ kT \ 

3N*kT hc J N* hc/d) 
= "not too big compared to unity" (24) 

Here numerical constants have been 

dropped. 
Let us now rewrite the virial theorem 

(Eq. 16) including the radiation en- 

ergy and the factor A: 

GM)(N )2 E, + 3N*kT A - ( (16a) R 

We divide this by N* and introduce the 
relations Eqs. 14 and 18, as we did to 

get Eq. 19 from Eq. 16. 

(kT)' hc)+ k ) d (19a) 

Here we put numerical factors such as 
A, 3, and 47r/3 equal to unity. Let us 
call x the combination 

T x 
held 

and we find that Eq. 19a is equivalent 
to 

4 + x (-N (25) 

The stability condition, Eq. 24, tells us 
that x3 should not be too big compared 
to unity. From this it follows that 
x4 + x should not exceed unity by a 

large factor, and according to Eq. 25 
neither should (N*/No)2'3. We therefore 
conclude that a star is stable as long 
as N* is not very much larger than No. 
Indeed, a more accurate calculation 
shows that N* must be smaller than 

60No. 
Thus it is seen that the number N* 

of protons in a star must be smaller 
than a certain multiple of No in order 
for them not to be blown apart by 
radiation, and larger than a certain 
fraction of No in order for them to 
reach the temperature which ignites 
the nuclear fire. The quantity,N0 is a 

simple combination (Eq. 14) of our 
fundamental constants. We thus have 
shown what we intended to do: the 
number N* of protons in a star is 
roughly of the order of N(,: 

60No > N* > O.1No 

These are rather narrow limits consid- 
ering that No is as large as 2 X 1057. 
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