
tion of specific substrates by enzymes 
-a procedure well known to bio- 
chemists for many years-may prove 
extremely useful in the analysis of 
other trace components of biological 
orgin in natural waters. 

STEPHEN E. HERBES* 
HERBERT E. ALLENf 

KHALIL H. MANCY 

Department of Environmental and 
Industrial Health, University of 
Michigan, Ann Arbor 48104 

References and Notes 

1. C. Juday and E. A. Birge, Trans. Wis. Acad. 
Sci. Arts Lett. 26, 353 (1931); D. R. S. Lean, 
Science 179, 678 (1973). 

2. R. A. Minear, thesis, University of Washing- 
ton (1971); F. F. Hooper, technical progress 
report to the Atomic Energy Commission 
(November 1969). 

3. J. P. Koenings and F. F. Hooper, Mich. 
Acad 5, 295 (1973). 

4. E. J. Kuenzler, J. Phycol. 1, 156 (1965). 
5. Highly eutrophic Frain's Lake is located in 

southeastern Michigan in Washtenaw County 
about 61/2 km east of Ann Arbor. The lake 
is approximately 8 ha in area and has no 
inlet or outlet; maximum depth is 9 m. 
Drainage from septic tanks, which border 
the western end, and runoff from agricultural 
land provide an influx of nutrients which 
produces massive algal blooms during the 
early summer. Third Sister Lake is a 4-ha 
lake approximately 3 km west of Ann Arbor. 

tion of specific substrates by enzymes 
-a procedure well known to bio- 
chemists for many years-may prove 
extremely useful in the analysis of 
other trace components of biological 
orgin in natural waters. 

STEPHEN E. HERBES* 
HERBERT E. ALLENf 

KHALIL H. MANCY 

Department of Environmental and 
Industrial Health, University of 
Michigan, Ann Arbor 48104 

References and Notes 

1. C. Juday and E. A. Birge, Trans. Wis. Acad. 
Sci. Arts Lett. 26, 353 (1931); D. R. S. Lean, 
Science 179, 678 (1973). 

2. R. A. Minear, thesis, University of Washing- 
ton (1971); F. F. Hooper, technical progress 
report to the Atomic Energy Commission 
(November 1969). 

3. J. P. Koenings and F. F. Hooper, Mich. 
Acad 5, 295 (1973). 

4. E. J. Kuenzler, J. Phycol. 1, 156 (1965). 
5. Highly eutrophic Frain's Lake is located in 

southeastern Michigan in Washtenaw County 
about 61/2 km east of Ann Arbor. The lake 
is approximately 8 ha in area and has no 
inlet or outlet; maximum depth is 9 m. 
Drainage from septic tanks, which border 
the western end, and runoff from agricultural 
land provide an influx of nutrients which 
produces massive algal blooms during the 
early summer. Third Sister Lake is a 4-ha 
lake approximately 3 km west of Ann Arbor. 

In the Royal Meteorological So- 

ciety's Symons Memorial Lecture for 
1974 Charney (1) discussed a bio- 

geophysical feedback mechanism which 
tends to produce changes in rainfall 
and plant cover. This mechanism oper- 
ates because of the dependence of the 
surface albedo on plant cover. Ground 
covered by plants has an albedo in the 

range 10 to 25 percent, whereas ground 
with no vegetation frequently has a 

higher albedo, as high as 35 to 45 per- 
cent in the case of dry, light, sandy soil 

(2). Thus a decrease in plant cover 

may be accompanied by an increase in 
the surface albedo. This would lead to 
a decrease in the net incoming radia- 
tion and an increase in the radiative 

cooling of the air. As a consequence, 
the air would sink to maintain thermal 

equilibrium by adiabatic compression, 
and cumulus convection and its as- 
sociated rainfall would be suppressed. 
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for example, winds, convection, clouds, 
rain, radiative absorption, and emission. 
We have used the general circulation 
model (GCM) developed at the God- 
dard Institute for Space Studies (6) 
to calculate the net effect of a change 
in surface albedo in the Sahara. We 
carried out two integrations, and for 
both we used the observed state of the 
atmosphere on 18 June 1973 as the 
initial condition. Both integrations 
were carried forward for 7 weeks of 
simulated time. The only difference be- 
tween the two integrations was the 
prescribed surface albedo for the 
Sahara. Both integrations had boundary 
conditions, such as sea surface tem- 
perature and soil moisture, prescribed 
to correspond to climatological condi- 
tions for July (summer is the rainy 
season in the Sahara). In one integra- 
tion the surface albedo in the Sahara 
was 14 percent, and in the other it 
was 35 percent. These albedos simu- 
late, respectively, a Sahara covered 
with plants and a Sahara devoid of 
plant cover. The albedos in the two in- 
tegrations differed at 46 grid points 
covering approximately the same re- 
gion as the actual Sahara. (The model's 
resolution is 4? in latitude and 5? in 
longitude.) 

Figure 1 shows the mean weekly 
precipitation averaged over the 46 grid 
points representing the Sahara, from 
both integrations. The rainfall in the 
high-albedo (35 percent) experiment 
was substantially smaller than that in 
the low-albedo (14 percent) experi- 
ment. The consistency in the difference 
in rainfall in each of the 7 weeks shows 
that the difference is real and not a 
result of statistical fluctuations in the 
GCM's behavior from one experiment 
to another. The mean rainfall over the 
Sahara during the calendar month of 
July was 4.4 mm/day in the low- 
albedo experiment and 2.5 mm/day in 
the high-albedo experiment, a decrease 
of 43 percent. The associated decrease 
in the zonal mean rainfall at the same 
latitudes was only 6 percent. There 
was also a decrease in cumulus cloud 
cover over the Sahara when the surface 
albedo was increased. The mean cumu- 
lus cloud cover during July was 26 
percent in the low-albedo integration 
and 19 percent in the high-albedo 
integration. 

Figure 2 shows the latitudinal distri- 
bution of the mean rainfall during July 
in the two experiments. From 18?N 
to 34?N the values plotted are the rain- 
fall averaged over all the grid points 
7 FEBRUARY 1975 
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in the Sahara at each latitude. South 
of 18?N where there were no Sahara 
grid points, the values plotted are 
averages over all grid points in the 
African continent at each latitude. 
Figure 2 illustrates that most of the 
rainfall over the Sahara actually occurs 
in the Sahel, near 18?N. The distribu- 
tion of rainfall in the Sahara in the 
high-albedo experiment is quite close 
to the observed distribution in sum- 
mer (7). Figure 2 also shows that 
the decrease in rainfall in the Sahara 
in the high-albedo experiment is com- 
pensated to some extent by an increase 
south of the Sahara. The shift in the 
rainfall distribution reflects a shift to 
the south of the Intertropical Converg- 
ence Zone (ITCZ) over Africa. The 
latitude of the mean low-level con- 
vergence over Africa during July was 
22?N in the low-albedo experiment 
and 16?N in the high-albedo experi- 
ment. There was no such shift of the 
ITCZ over Asia in the two experi- 
ments. Here again, the high-albedo 
experiment is the more realistic one. 

To determine how local the albedo 
change can be and still produce large 
changes in rainfall, we carried out a 
third numerical experiment. In this 
experiment the albedo was increased 
relative to the low-albedo experiment 
only in the Sahel, that is, only at the 
Sahara grid points located at 18?N. 
The initial condition for this integration 
was the same as that of the other two 
experiments, but this integration cov- 

ered only 2 weeks of simulated time. 
Consequently the results do not have 
the statistical significance of the two 
experiments described above. However, 
they do show a similar effect on the 
rainfall. For example, during days 3 
to 10 of the integration the mean 
rainfall at 18?N decreased by 75 per- 
cent. This result indicates that very 
local changes in albedo may be suffi- 
cient to produce droughts. 

We conclude that surface albedos 
can have a substantial effect on climate 
in the Sahara, and that the biogeophys- 
ical feedback mechanism is a plausible 
one for causing such changes. We can 
envisage overgrazing in the Sahel lead- 
ing to an increase in the surface albedo 
which causes the ITCZ to move south 
and the rainfall over the Sahel to de- 
crease, perhaps by as much as 40 
percent. Since the GCM we used does 
not include a model of the biosphere 
for calculating changes in albedo re- 
sulting from changes in rainfall, this 
40 percent figure is, in effect, an upper 
bound on the amount that would occur 
if all links in the feedback mechanism 
were included. The need for a model 
of the biosphere emphasizes the com- 
plexity of climatic problems. Our re- 
suilts do show the importance of 
monitoring surface albedos from satel- 
lites. 
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