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stimulation, peripheral versus LG con- 
flict was carried out in three cats. Oc- 
casional instances were obtained in 
which electrical stimulation of the LG 
at the higher frequency successfully 
contradicted the flicker cue at the lower 
frequency, while LG stimuli at the 
lower frequency seldom prevailed over 
higher frequency flicker signals. Lat- 
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formly ineffective to control behavior 
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Our findings of high levels of dif- 
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vide strong support for the contention 
that discriminations such as these are 
mediated by the average temporal pat- 
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ensembles rather than by discharges in 
particular synaptic pathways represent- 
ing a specific experience. These RF 
stimuli cannot conceivably reproduce 
a unique and intricate topology of 
synaptic discharges corresponding to 
those normally excited by particular 
peripheral signals. Undoubtedly, gross 
electrical stimuli merely impose a cor- 
responding temporal pattern upon 
masses of cells. The stability of per- 
formance when the fine structure of 
RF stimuli was altered, as well as the 
stimulus generalization obtained so 
readily when other brain regions were 
stimulated, provides further proof that 
these discriminations do not depend 
upon activation of specific synapses or 
pathways. These results cannot be at- 
tributed to nonspecific factors because 
they require correct discrimination 
between two different patterns of 
stimulation applied to the same site. 

Lateral geniculate stimulation suc- 
cessfully contradicted visual cues only 
when the rate of central stimulation 
was more rapid than the flicker. Lat- 
eral geniculate stimuli completely failed 
to contradict auditory cues at either 
rate. Visual cues were hardly ever 
found successful in contradicting audi- 
tory cues. These results suggest that 
LG stimulation simulates visual sensa- 
tion. The ability of RF stimuli to pre- 
empt control of behavior whether in 
conflict with visual or auditory cues 
shows that RF input does not merely 
simulate the sensations caused by ordi- 
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suggest that the organized firing of 
anatomically extensive neuronal en- 
sembles accomplished by patterned RF 
stimulation simulates the activation of 
specific memories. 
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Origin of Martian Channels: Clathrates and Water Origin of Martian Channels: Clathrates and Water 

The similarity of many large martian 
channels to terrestrial ones has led to 
speculation that at some time in the 
past there was sufficient water on the 
surface of Mars to erode the observed 
channels (1). Some of these channels 
are so large, however, that flow rates 
many times that of the Amazon River 
are suggested. The fact that these chan- 
nels frequently begin in "chaotic terrain" 
and lack tributaries implies an under- 
ground source capable of supplying the 
large flows. 

The most obvious underground 
sources would seem to be either the 
rapid melting of an ice permafrost or 
the release of liquid water trapped be- 
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rapid melting of an ice permafrost or 
the release of liquid water trapped be- 

neath such a permafrost. Milton (2), 
noting that there is a considerable heat 
problem associated with the rapid melt- 
ing of a permafrost, proposes that the 
liquid water might come from the de- 
pressurization of CO2 hydrate, which 
could exist at depths where the pres- 
sure exceeded 10 bars and the temper- 
ature exceeded 0?C. This explanation 
ignores the obvious alternative that 
liquid water could already exist under 
those conditions. In fact, with the mo- 
lecular ratio of H20/CO2 of 15/1, 
cited by Milton, only about one-third 
of the available water can be tied up 
in the clathrate compound. Thus, a far 
larger volume of water would already 
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be in liquid form and could be tapped 
simply by breaking the overlying per- 
mafrost without the decomposition of 
the clathrate (3). 

Although a clathrate, rather than an 
ice, permafrost eliminates the need for 
an external heat source, it still requires 
a local heat source and thus the heat 
problem remains. In fact, since 150 
cal is required to release 1 g of water 
from the clathrate compared to 80 cal 
required to release I g of water from 
ice, the heat problem is aggravated by 
the introduction of clathrate. What 
dispels the problem is not that the 
water is in the clathrate but that the 
water is already liquid at a temperature 
above its freezing point and no latent 
heat need be supplied at all! 

Even if the only available water were 
bound up in the clathrate, in order to 
maximize the amount of water released 
the ratio of the clathrate to the rock 
matrix would have to be carefully ad- 
justed at all points beneath the surface 
to just cool the surrounding rock to 
0?C as the clathrate is exhausted. If a 
higher fraction of clathrate were pres- 
ent, once 0?C is reached, the necessary 
latent heat of decomposition would be 
obtained by the freezing of some of the 
liquid water just released, thus removing 
its contribution to the expected flow. 
In fact, even when excess water is 
already available in liquid form, clath- 
rate decomposition would reduce the 
amount released because part of it 
would freeze. 

Thus, regardless of the H20/CO.2 
ratio, the presence of water in a CO. hy- 
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Polynesian Voyaging 

At the end of the report (1) on the 
"Probable Fijian origin of quartzose 
temper sands in prehistoric pottery 
from Tonga and the Marquesas," Dick- 
inson and Shutler conclude with the 
following point: "The implication for 
Polynesian origins is a continuing in- 
fusion of Melanesians into Polynesia 
from Fiji (and perhaps elsewhere). . ..." 
While I would not disagree with the 
generality of their statement, in the 
particular case in question I offer an 
alternative viewpoint based on work in 
Western Samoa. 

In Western Samoa we have shown 
that if at an early stage in the sequence 
the inhabitants possessed pottery and 
then abandoned it, a few sherds from 
the early levels tend through subse- 
quent disturbances to be incorporated 
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