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Io: A Surface Evaporite Deposit? 

Abstract. A model is suggested for Io's surface composition involving evaporite 
salt deposits, rich in sodium and sulfur. According to this model, these deposits 
were produced as a result of the migration of salt-saturated aqueous solutions to 
Io's surface from a warm or hot interior followed by loss of the water to space. 
This model satisfies cosmochemical constraints based on lo's initial composition, 
current density, and thermal history. Salt-rich assemblages are easily derivable 
from the leaching of carbonaceous chondritic material; the chemical and optical 
properties of such deposits, after modification by irradiation, can be used to ex- 
plain lo's overall albedo and spectral reflectance, its dark reddish poles, and the 
observed sodium emission as well as or better than other currently suggested 
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Any hypothesis for lo's surface 

composition must explain the spectral 
curves of lo and the other Galilean 
satellites in a manner consistent with 
what is known of their cosmochemical 
setting in the solar system. Io has long 
been noted for its unusual optical prop- 
erties, particularly its high visual albedo 
and its very low blue and ultraviolet 
reflectance (1, 2). The high albedo, 
polarimetric evidence (3), and the high 
derived value for the phase integral 
(q 0.7) (1, 4) all suggest that lo's 
surface is covered by low-opacity, 
multiply scattering material. We hypoth- 
esize that the surface of Io is largely 
covered with an evaporite salt deposit, 
produced by the migration to the sur- 
face of salt-rich aqueous solutions from 
Io's interior with subsequent water loss 
to space from the surface. First, we will 
discuss relevant data from mineralogical 
and chemical studies of meteorites 
which suggested our (evaporite) 
hypothesis. Then we will compare the 
visible and near-infrared spectrum of 
Jo with our spectra for laboratory 
samples that seem appropriate for test- 
ing our hypothesis. Finally, we will 
show that our hypothesis is consistent 
with what is known of the cosmo- 
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chemical history of the Galilean satel- 
lites. 

Studies of the mineralogy and 
chemistry of carbonaceous chondritic 
meteorites would appear to be per- 
tinent to Io since models for tempera- 
ture and pressure gradients in the pre- 
planetary nebula (5) and derivative 
chemical models for the initial con- 
densation of solid material (6) suggest 
that carbonaceous chondritic material 
condensed in the asteroid belt and 
beyond. Supportive evidence from a 
comparison of asteroid and meteorite 
spectra has recently been reported (7). 

Meteoritical studies are supportive of 
our hypothesis in that they provide 
direct evidence of salt production in 
the parent bodies of carbonaceous 
chondrites (8). In the type I carbona- 
ceous chondrites, epsomite (MgSO4 
XH20), bloedite (MgSO4 Na2SO4' 
XH.O), and gypsum (CaSO4' 2H,O) 
have been identified (8). In some speci- 
mens salt deposits virtually fill the pores, 
and in some specimens of the Orgueil 
meteorite up to 15 percent by weight 
of epsomite is present (8). Moreover, 
studies by Edwards and Urey of the 
alkali metals in the various types of 
chondrites suggested to them that the 
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carbonaceous chondrites had been sub- 
jected to an aqueous leaching process, 
resulting in extensive alkali metal 
migration (9). 

With this background in mind, we 
will now compare the optical properties 
of Io with those of several salts, in- 
cluding an Orgueil leach evaporite we 
prepared in the laboratory, and with 
the spectra of previously suggested 
candidate surface materials. Figure 1 
shows the spectral spherical albedo of 
Io (heavy line) (10) reduced from the 
geometric albedo with the use of a 
phase integral of 0.7 (1). The spectral 
albedos of three evaporite samples are 
shown (curves a-c), along with those 
for sulfur (curve d) (11), NH4SH 
(curve e) (11), ammonium polysulfide 
(curve f) (11), and NH3 frost (curve 
g) (12). 

The curve we obtained for natural 
halite (NaCI) (curve a) indicates a 
fairly uniform high albedo from 0.3 
to 2.5 j,m. Thus, although the albedo of 
halite matches Io's albedo in the near- 
infrared reasonably well, it does not 
match in the ultraviolet and visible. 
Natural terrestrial evaporites are fre- 
quently more highly colored by im- 
purities than the halite sample. The 
leached evaporite from Orgueil (curve 
b) shows such coloration and is a better 
match to lo's curve. We obtained this 
sample by leaching a 70-mg sample of 
Orgueil in 40 ml of near-boiling distilled 
water for 1 hour, filtering the leach 
solution, and evaporating it to dryness. 
The evaporite salt resulting from this 
exceedingly mild leaching weighed 3.4 
mg, or 5 percent by weight of the 
original sample. Wet chemical analysis 
showed 34 percent S042- and 0.8 per- 
cent C1-. Emission spectrographic 
analysis gave, in the order of decreasing 
enrichment over bulk Orgueil concen- 
trations, the following results: sodium, 
11 percent; calcium, 6.8 percent; man- 
ganese, 0.7 percent; potassium, <2 
percent; nickel, 2.9 percent; magne- 
sium, 25 percent; aluminum, 0.25 per- 
cent; silicon, 3.7 percent; and iron, 
0.08 percent. Note that this mild leach- 
ing procedure concentrated virtually all 
the sodium in the meteorite sample in 
the resulting evaporite. A similar ex- 
periment was carried out by Nagy et al. 
(13), who reported that x-ray diffrac- 
tion analysis of a leach evaporite from 
Orgueil gave MgS04 XH2O peaks plus 
"other minor peaks." 

In addition to changes in optical 
properties caused by chemical impuri- 
ties, the high-energy-particle environ- 
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ment of Jupiter's magnetosphere (14) 
could also cause alterations in the op- 
tical properties of Io's surface materials. 
Most earlier suggestions concerning 
irradiation-produced colors focused on 
the production of free radicals, poly- 
mers, or organic compounds (15). 
Many of these possibilities can probably 
be eliminated on the basis of the near- 
infrared reflectance spectra of these 
materials, as with frosts (1). However, 
color center production does not neces- 
sarily suffer from this problem. Salts 
are particularly susceptible to color 
center formation under irradiation 
(16). Curve c shows the reflectance of 
a proton-irradiated sample of halite 
immediately after irradiation (17). The 
deep absorption centered near 0.48 ium 
is due to F color centers in the NaCl 
lattice. The depth of absorption de- 
creased rapidly with time as the color 
centers annealed out at room tempera- 
ture. In the low-temperature, constant- 
irradiation environment of Io, however, 
color center formation would be ex- 
pected to play a major role. This 
mechanism may also explain Io's dark 
reddish polar regions (18) since the 
incident radiation per unit area is 
highest at the poles and the tempera- 
ture lowest. The temperature depen- 
dence of color center formation and 
retention may also play a role in 

eclipse phenomena such as the post- 
eclipse brightening (1). In addition to 
color center production, it is quite pos- 
sible that preferential oxygen sputtering 
or proton-induced reduction, and con- 
sequent sulfur production in a sulfate- 
rich matrix such as our Orgueil leach 
evaporite, may be important in pro- 
ducing coloration. If so, this process 
may also have operated more effectively 
at the poles, again possibly explaining 
Io's dark reddish polar regions. Finally, 
the possibility of a relatively high 
sodium abundance in a surface evap- 
orite deposit may also help explain the 
presence of sodium-D-line emission 
from the region around Io (19). 

Several alternative suggestions re- 
garding candidate surface materials for 
Io have previously been made, and the 
spectra of these materials are shown in 
Fig. 1 as well. One frequently men- 
tioned possibility is that some variety 
of frost or ice is present. There are 
several problems with the frost hy- 
pothesis, however: 

1) Io's near-infrared spectrum does 
not show any strong absorption bands 
(Fig. 1), in contrast to those of Europa 
and Ganymede wherein infrared ab- 
sorptions have been identified as re- 
sulting from H20 frost (20, 21). Also 
NH3 frost (curve g) shows deep in- 
frared absorptions. 

T-F'T?"-- -TTT---F---TT ---F-T-T--T-F--TI_T 
-T Fig. 1. The spectral re- 
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Wavelength (pm) use of a phase factor of 
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integral). Thus, absolute reflectance comparisons are probably good only to .10 per- 
cent. The upper portion of the figure shows laboratory data for natural halite (NaCI) 
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2) lo's visual (0.3 to 1.1 utm) re- 
flectance spectrum is not white as 
would be expected for pure frosts. A 
number of possible chromophores to 
account for this color have been sug- 
gested (1). 

3) Io has dark reddish polar regions 
(18), in contrast to the bright polar 
caps of Europa (22, 23). 

Materials other than frosts which 
have been discussed as candidate sur- 
face materials include NH4SH and pure 
sulfur, possibly derived from H2S (22, 
24), and ammonium hydrosulfides 
(25). Unlike NaCl and the Orgueil 
evaporite, the ammonia compounds in 

general have absorption features in the 
near-infrared which are not observed 
on Io (11); for example, see the 

spectra for NH4SH (curve e) and 
ammonium polysulfide (curve f). The 

spectrum of selensulfur (curve d) 
matches the ultraviolet reflectance of 

Io well. Reflectance curves for pure 
sulfur are similar (11). Sulfur might 
conceivably be derived from the out- 

gassing of HaS or by the irradiation of 
a sulfate salt, as discussed above. 

Our hypothesis is also quite com- 

patible with recently published hy- 
potheses concerning the pre- and post- 
accretion thermal history of the 
Galilean satellites. As indicated above, 
solid material in the preplanetary neb- 
ula at Jupiter's heliocentric distance is 

considered to have consisted of a mix- 
ture of carbonaceous chondritic mate- 
rial and ices. Differences in density 
between the Jovian satellites may be 
due to an initially high surface lumi- 

nosity for Jupiter (26). This would 

prevent the incorporation of large 
amounts of H20 ice in the innermost 

major Jovian satellite, Io, which has a 

density of -3.5 g/cm3 (27); Europa, 
by comparison, has a lower density of 
-2.9 g/cm3 (27) and strong H2O ice 
bands in its reflectance spectrum (20, 
21). Ganymede clearly contains a very 

large proportion of H2O ice, as shown 

by its density of -1.9 g/cm3 (27). If 

Io accreted essentially free of H2O ice, 
then it might be expected that the de- 

gassing of any chemically bound water, 
such as is present in all forms of car- 
bonaceous chondrites (28), is virtually 
certain to have occurred throughout Io's 
interior (29). Water percolating to the 
surface of Io is also certain to have 
become saturated with salts, and even- 

tually the loss of water initially supplied 
to the surface or near subsurface would 
result in the retention of salts, regardless 
of whether evaporation or sublimation 
was the mechanism of loss (30). 
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It is difficult to judge on theoretical 

grounds what the composition of the 

resulting exposed evaporite salts on Io 
might be. However, we expect that the 

proposed method of formation would be 

likely to result in a chemically complex 
mixture of salts, like our leach evapo- 
rite, rather than in a single pure salt 
such as the epsomite that occurs so 

conspicuously in Orgueil. 
We interpret the high density of Io 

(27) and the absence of H20 ice bands 
in its surface spectrum (1) as signify- 
ing that the above process has pro- 
ceeded essentially to completion. In 

contrast, both the lower density of 

Europa (27) and the presence of 

strong H20 ice bands in its surface 

spectrum (20, 21) seem to suggest a 
less advanced state of dehydration than 
for lo and to indicate that H20 ice 
has lately been supplied to Europa's 
surface at a rate comparable to or 

greater than that at which it has been 
lost. The next satellite, Ganymede, 
shows weaker H20 ice bands (20, 21). 
But Ganymede must contain much 
more H20 ice in bulk (27, 29). This 

may suggest that the separation of H20 

ice and silicates has not yet reached 
the surface of Ganymede. 

In summary, our data suggest that 
an irradiation-altered evaporite salt as- 

semblage could provide at least as good 
a match to Io's reflectance spectrum as 

any other previously suggested mate- 
rials. At the same time, the presence 
of surface evaporite salts seems com- 

patible with cosmochemical and mete- 
oritical evidence. Finally, our hypothesis 
may help to explain some otherwise 

perplexing properties of lo such as its 
dark poles and the sodium-D-line 
emission from the region around lo. 

F. P. FANALE 
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D. L. MATSON 

Jet Propulsion Laboratory, 
California Institute of Technology, 
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Pasadena 91103 
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mined by the integral of the longitu- 
dinal strain rates along the glacier. This 
principle ensures that Vb and rb for 
the glacier as a whole are solved simul- 
taneously to allow feedback and inter- 
action so that their values at any one 
point interact with the values at other 
points. 

4) The mean longitudinal strain 
rate through a column is governed by 
the equation of longitudinal stress equi- 
librium for scales large by comparison 
with Z and for small surface slopes a 
(sin a a) (6): 
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where ai' is the mean longitudinal 
stress deviator through the column at 
position x along the glacier and rT is 
the central downslope stress of the 
column given by 

where ai' is the mean longitudinal 
stress deviator through the column at 
position x along the glacier and rT is 
the central downslope stress of the 
column given by 
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Modeling Periodically Surging Glaciers 

Abstract. A numerical model has been developed which produces periodic 
surging as a characteristic of some glaciers for a certain accumulation and bed- 
rock distribution in contrast to the normal steady state for nonsurging glaciers. 
Results are presented to illustrate how the magnitude of changes in the length, 
thickness, and velocity of surging glaciers can be simulated by the model. 
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The sudden advance or "surge" of 
a glacier or ice cap after years of 
apparent stagnation or retreat remains 
one of the most fascinating and puz- 
zling phenomena associated with these 
large ice masses. Such surges [in 
which the glacier moves forward often 
many kilometers over periods of 
months to years at speeds one or two 
orders of magnitude faster than normal 
(1)] occur in most glaciated regions 
of the world, and it has been suggested 
(2) that their occurrence in the Ant- 
arctic or Greenland ice sheets could 
have catastrophic consequences on a 
global scale (3). 

Numerical models already developed 
for glaciers (4) give a reasonable ap- 
proximation to their normal flow be- 
havior but cannot be considered satis- 
factory unless they take into account 
the surging mode as well. Our aim in 
the work presented here was to de- 
velop a simple model which simulates 
the most important aspects of surging 
glaciers and which can be made more 
sophisticated to match their detailed 
features as further information on 
these becomes available. We present 
here preliminary results showing how 
the model reproduces various surge 
phenomena. The detailed theory of the 
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model and its application to specific 
surging glaciers will be described else- 
where (5). 

For maximum simplicity we have 
used a two-dimensional model repre- 
senting the central flow line of a glacier 
or a general flow line of an ice sheet. 
Techniques for determining the param- 
eters of the central flow line for a given 
glacier have been described by Budd 
and Jenssen (4). The main principles 
upon which the surge model is con- 
structed are as follows: 

1) The average velocity V of a 
vertical ice column is composed of the 
average internal deformation through 
horizontal shear Vi plus the basal slid. 
ing velocity VI,: 

V= vi +V, (1) 

2) One can obtain the average inter- 
nal velocity of the column from the 
flow properties of the ice, for example, 
using a power law for flow 

Vi = A- T," Z (2) 

where r1, is the base stress, Z is the 
ice thickness, and k and n are flow law 
parameters of the ice. 

3) The quantity V1, at a point is not 
directly related to other properties of 
the glacier at that point but is deter- 
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where s is the shape factor for the 
glacier cross section (varying typically 
from 0.5 to 1' for symmetric shapes 
varying from semicircular to infinitely 
wide), p is the density of ice, and g 
is the gravitational acceleration. 

Equation 3 expresses the large-scale 
balance between the three main forces 
on a longitudinal section element of 
the glacier, namely, the gravitational 
force downslope, the basal friction 
force of the bed upslope, and the dif- 
ference between these forces over its 
ends. 

5) The mean longitudinal strain rate 
through a column e, is proportional 
to t/,' that is 
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Equation 5 provides for the extension 
or compression of the section of the 
glacier according to whether the longi- 
tudinal stress is greater or less than 
the overburden averaged through the 
thickness. The resultant strain rate is 
dependent on the flow properties of the 
ice. 

For the simplest model we have 
taken the "generalized viscosity" rj as 
a constant to show that a nonlinear 
flow law is not an essential require- 
ment for surging. More general flow 
law relations can be used as required, 
such as a power law or a hyperbolic 
sine law. For development purposes 
Eqs. 2 and 5 allow the flow properties 
of the ice in horizontal shear and in 
longitudinal tension or compression to 
be studied independently. This is im- 
portant for nonlinear flow laws for 
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