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The feasibility of using laser Doppler 
velocimetry to measure blood flow ve- 
locity in retinal vessels of rabbits was 
previously demonstrated (1). It was 
speculated then that such measurements 
could be performed in humans if the 
recording time could be short enough 
to minimize the effects of slow eye 
drifts and if the retinal irradiance 
could be decreased to permissible levels. 
These requirements have now been 
satisfied, and we report here in vivo 
measurements of the flow velocity of 
blood in human retinal vessels. 

Laser Doppler velocimetry is a con- 
ventional technique for measuring the 
velocity of particles suspended in a fluid 
(2). It is based on the Doppler effect. 
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permit finer resolution of environmental dif- 
ferences. However, many infaunal bivalves 
living in very shallow water have relatively 
extensive geographic ranges (26). Elimination 
of cosmopolitan genera thus reduces the effect 
of this "noise." 
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The laser light scattered from a moving 
particle is shifted in frequency by an 
amount f according to the Doppler re- 
lation 

f: (l/27r) (Ks-Ki) V 

where Ki and Ks are the wave vectors 
of the incident laser beam and the scat- 
tered beam, respectively, and V is the 
velocity of the particle. The magnitude 
of the frequency shift can be measured 
by optical heterodyning. With this 
method, the light scattered from the 
moving particles is combined at the sur- 
face of a photodetector with a local 
oscillator or reference beam which is, 
in general, a portion of the laser beam 
initially incident on the scattering re- 
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Fig. 1. (a) Correlation function for light scattered from the blood flowing in a glass 
capillary with an internal diameter of 160 ,um; the flow velocity was 2.0 cm/sec. The 
half-width of the correlation function is denoted by r. (b) Plot of 1/r as a function 
of average velocity of blood flowing in a glass capillary with an internal diameter 
of 160 [im. 
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Blood Velocity Measurements in Human Retinal Vessels 

Abstract. Laser Doppler velocimetry was used to measure the velocity of blood 
in human retinal vessels. The imean flow velocities obtained were 1.9 centimeters 
per second in a retinal vein and 2.2 centimeters per second in a retinal artery. 
Scattered light from a weak helium-neon laser beam focused on the vessel was 
detected by a photomultiplier, and the temporal correlation of the intensity fluc- 
tuations was measured with a photon counting autocorrelator. A utocorrelation 
functions for blood flowing through glass capillaries were used for calibration. 
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gion. The photodetector mixes both 
signals to give in the output photocur- 
rent a signal which fluctuates at the 
difference frequency. 

Light from a He-Ne laser beam is 
focused on a retinal vessel through a 
contact lens applied to the cornea of the 
subject. In the fundus the beam is about 
200 /tm in diameter. The power of the 
beam is attenuated to 18 /tw by a neu- 
tral density filter. As a result, the retinal 
irradiance is about 0.05 watt/cm2. Such 
an irradiance corresponds to half of the 
maximum permissible level for continu- 
ous illumination (3). 

The spot is observed through the 
microscopes of a conventional slit lamp. 
One of these microscopes is also used 
to collect the light scattered back by the 
retinal vessel. After deflection by a semi- 
transparent mirror, this light is focused 
on a slit and detected by a photomulti- 
plier. The output pulses of the photo- 
multiplier are digitally amplified and 
discriminated by a pulse amplifier and 
then fed into an 18-channel digital 
autocorrelator. 

The subject is positioned in front of 
the slit lamp in the same way as for a 
routine contact lens examination. The 
optical setup provides heterodyne detec- 
tion of the Doppler shift. The light scat- 
tered from the vessel wall acts quite 
effectively as a local oscillator. To better 
define our scattering geometry for the 
experiments in humans, we measured 
velocity spectra only from vertical 
blood vessels around the optic disk. 

When flowing particles move at vari- 
ous velocities, the frequency spectrum 
contains a range of frequencies corre- 
sponding to the range of velocities. For 
example, the frequency spectrum of 
polystyrene spheres suspended in water 
flowing through glass capillaries is char- 
acterized by a rectangular shape with a 
sharp cutoff at a frequency correspond- 
ing to the maximum velocity (1). With 
blood, on the other hand, the sharp cut- 
off disappears and we have instead a 
rather broad tail. This tail has been as- 
sociated with the effect of multiple 
scattering (1, 4). Light can be scattered 
by two or more red blood cells before 
impinging on the photocathode, and this 
broadens the spectral profile, since two 
or more velocity combinations are pos- 
sible in the multiply scattered light. 
Therefore, the frequency spectrum for 
blood is not a direct representation of 
the velocity spectrum. As a result, the 
mean flow velocity cannot be deter- 
mined directly from the frequency spec- 
trum and an experimental calibration 
procedure relating the frequency spec- 
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Fig. 2. Correlation functions for light 
scattered from blood flowing in (a) a 
human retinal artery 120 gm in diameter 
and (b) a human retinal vein 160 ,um in 
diameter (open circles). The closed circles 
in (b) represent the correlation function 
for light scattered from the optic disk 
tissue. 

trum to the mean velocity of the red 
cells was adopted. Similar considera- 
tions are valid for the autocorrelation 
function, which is just a Fourier trans- 
formation of the frequency spectrum. 

Using a similar scattering geometry, 
we measured the correlation function 
for light scattered from blood flowing 
in glass capillaries, as a function of the 
mean flow velocity (Fig. la). The half- 
width T of this correlation function pro- 
vided the necessary calibration for the 
results for humans. The calibration 
curve we obtained consisted of a plot of 
1/T against the mean flow velocity, Va., 
in the tube. A typical calibration curve 
for a tube 160 pm in diameter is shown 
in Fig. Ib. Similar curves were con- 
structed for glass tubes with diameters 
ranging from 60 to 200 ,/m. Since the 
time scale of the correlation function is, 
in general, determined by the reciprocal 
of the characteristic frequency of the 
spectrum, we expect that 

(1/r) cc f .ox cI V;.. 

This proportionality between 1/T and 
Vav is what we found and is represented 
in Fig. lb. 

Autocorrelation functions C(t) for 
the light scattered by blood flowing in a 
retinal artery and a retinal vein of a 
human subject are shown in Fig. 2, a 
and b, respectively. The vein was about 
160 p/m in diameter and the artery 
about 120 /tm, evaluated from fundus 
photographs (assuming a refractive 
power for the emmetropic subject of 
57 diopters). These autocorrelation 
functions have practically the same 
shape as those obtained from blood 
flowing through glass capillaries. 

The mean flow velocity in a vessel 

was determined from the half-width of 
the autocorrelation function and the 
calibration curve associated with the 
capillary tube of the same size as the 
vessel. In the human subject we found 
1.9 cm/sec for a 160-p,m vein, 1.6 cm/ 
sec for a 130-,um vein, and 2.2 cm/sec 
for a 100-,tm artery. The mean brachial 
arterial blood pressure was 90 torr and 
the intraocular pressure was 21 torr. 
As a blank test, we also measured the 
autocorrelation function of light scat- 
tered by a part of the optic disk that 
did not contain any large vessels. We 
found it to be practically constant, cor- 
responding to the slow, multidirectional 
flow of blood in the capillaries of the 
optic nerve (Fig. 2b). 

We were unable to find published 
data on the mean flow velocity in reti- 
nal vessels (5). Thus, we cannot con- 
firm our measurements of Va,. Never- 
theless, the close similarity between the 
correlation functions for blood flowing 
in the retina and in glass tubes gives us 
confidence in our results. These experi- 
ments show that laser Doppler velocime- 
try permits simple, safe, and quantitative 
determination of blood flow velocity in 
human retinal vessels. This technique. 
which can easily be adapted for clinical 
use, should prove to be a valuable tool 
for the diagnosis and management of 
circulatory disorders in the eye. 
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