
Biological Populations with Nonoverlapping Generations: 
Stable Points, Stable Cycles, and Chaos 

Abstract. Some of the simplest nonlinear difference equations describing the 
growth of biological populations with nonoverlapping generations can exhibit a 
remarkable spectrum of dynamical behavior, from stable equilibrium points, to 
stable cyclic oscillations between 2 population points, to stable cycles with 4, 8, 
16, . . . points, through to a chaotic regime in which (depending on the initial 
population value) cycles of any period, or even totally aperiodic but bounded 
population fluctuations, can occur. This rich dynamical structure is overlooked in 
conventional linearized analyses; its existence in such fully deterministic non- 
linear difference equations is a fact of considerable mathematical and ecological 
interest. 

In some biological populations (for 
example, man), growth is a continuous 
process and generations overlap; the 
appropriate mathematical description 
involves nonlinear differential equa- 
tions. In other biological situations (for 
example, in 13-year periodical cicadas), 
population growth takes place at dis- 
crete intervals of time and generations 
are completely nonoverlapping; the ap- 
propriate mathematical description is in 
terms of nonlinear difference equations. 
For a single species, the simplest such 
differential equations, with no time de- 
lays, lead to very simple dynamics: a 
familiar example is the logistic, dN/dt = 
rN( - N/K), with a globally stable 
equilibrium point at N =K for all 
r>0. 

It is the purpose of this report to 
point out that many of the correspond- 
ing difference equations of population 
biology have been discussed inade- 
quately, as having either a stable equi- 
librium point or being unstable, with 
growing oscillations (1, 2). In fact, 
some of the very simplest nonlinear 
difference equations even for single 
species exhibit a spectrum of dynamical 
behavior which, as the intrinsic growth 
rate r increases, goes from a stable 
equilibrium point, to stable cyclic oscil- 
lations between 2 population points, to 
stable cycles with 4 points, then 8 
points, and so on, through to a regime 
which can only be described as chaotic 
(a term coined by J. A. Yorke). For 
any given value of r in this chaotic 
regime there are cycles of period 2, 3, 
4, 5, .. ., n, .. ., where n is any posi- 
tive integer, along with an uncountable 
number of initial points for which the 
system does not eventually settle into 
any finite cycle; whether the system 
converges on a cycle, and, if so, which 
cycle, depends on the initial population 
point (and of course some of the cycles 
may be attained only from infinitely 
unlikely initial points). Figure 1 aims 
to illustrate this range of behavior. 
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Specifically, consider the simple non- 
linear equation 

N,m = Ntexp[r(1 - Nt/K)] (1) 

This is considered by some people (2, 
3) to be the difference equation analog 
of the logistic differential equation, with 
r and K the usual growth rate and 
carrying capacity, respectively. The sta- 
bility character of this equation, as a 
function of increasing r, is set out in 
Table 1 and illustrated by Fig. 1. 

Another example is 

Nt+l = Nt[1 + r(1 - Nt/K)] (2) 

This quadratic form is probably the 
simplest nonlinear equation one could 
write. Although discussed by various 
people (4, 5) as the analog of the logistic 
differential equation, Eq. 2 is less satis- 
factory than Eq. 1 by virtue of its un- 
biological feature that the population 
can become negative if at any point 
Nt exceeds K(1 +r)/r. Thus, stability 
properties here refer to stability within 
some specific neighborhood, whereas in 
Eq. 1, for example, the stable equilib- 
rium point at N=K is globally stable 
(for all N> 0) for 2 > r> 0. With this 
proviso, the stability behavior of Eq. 2 
is strikingly similar to that of Eq. 1; see 
Table 1. 

That such single species difference 
equations should describe populations 
going from stable equilibrium points to 
stable cycles as r increases is not sur- 

prising, in view of the general engineer- 
ing precept that excessively long time 
delays in otherwise stabilizing feedback 
mechanisms can lead to "instability" 
or, more precisely, to stable limit cycles 
(5, chapter 4; 6). What is remarkable, 
and disturbing, is that the simplest, 
purely deterministic, single species mod- 
els give essentially arbitrary dynamical 
behavior once r is big enough (r> 
2.692 for Eq. 1, r> 2.570 for Eq. 2). 
Such behavior has previously been 
noted in a meteorological context (7), 
and doubtless has other applications 
elsewhere. For population biology in 
general, and for temperate zone insects 
in particular, the implication is that 
even if the natural world were 100 per- 
cent predictable, the dynamics of pop- 
ulations with "density dependent" regu- 
lation could nonetheless in some cir- 
cumstances be indistinguishable from 
chaos, if the intrinsic growth rate r were 
large enough. 

The detailed analysis substantiating 
these remarks, and deriving Table 1, 
will be set out in the technical litera- 
ture. A very brief outline is as follows: 
(i) For the general nonlinear difference 
equation 

Nt+ = f(Nt) (3) 
the locally stable equilibrium point or 
points can be found by the conventional 
techniques of linearized stability analy- 
sis. For Eq. 1, a fully nonlinear analy- 
sis can be given by observing that Vt - 
(N ,-K)2 is a Lyapunov function, 
with the properties Vt>0 and AVt = 

Vt - -Vt 0 for all Nt > 0, for 2> 
r>0: this ensures that the equilibrium 
point is globally stable. (ii) Next, the 
possible occurrence of cycles with pe- 
riod 2 may be studied for the equation 

Nt+= f[f(Nt)] (4) 
For Eqs. I and 2 this has a unique non- 
trivial equilibrium solution, N* = K, for 
r < 2, corresponding to the above stable 
point; as r increases above 2 this solu- 
tion of Eq. 4 becomes unstable, and (as 

Table 1. Dynamics of a population described by the difference equations 1 or 2. 

Value of the growth rate, r 
Dynamical behavior 

Equation 1 Equation 2 

Stable equilibrium point 2 > r > 0* 2 > r > 0 
Stable cycles of period 2'" 

2-point cycle 2.526 > r > 2.0001 2.449 > r > 2.000 
4-point cycle 2.656 > r > 2.526t 2.544 > r > 2.449 
8-point cycle 2.685 > r > 2.656 2.564 > r > 2.544 
16, 32, 64,... 2.692 > r > 2.685 2.570 > r > 2.564 

Chaotic behavior. (Cycles of arbitrary r > 2.692? r> 2.570 
period, or aperiodic behavior, depend- 
ing on initial condition.) 

* See Fig. la. t See Fig. lb. $ See Fig. lc. ? See Fig. 1, d, e, and f. 
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illustrated by Fig. Ib) bifurcates into 
a pair of points, between which the 
population alternates in a 2-point cycle 
which is stable provided 2<r<2.526 
for Eq. 1, and 2 <r < 2.449 for Eq. 2. 
Beyond this, the 2-point cycle in turn 
becomes unstable and each of the points 
bifurcates into 2 further points, giving 
a stable 4-point cycle (for example, 
Fig. Ic), and so on. (iii) As r con- 
tinues to increase, there is a limit to 
this process whereby cycles of period 
2" become unstable and bifurcate into 
stable cycles of period 2n+l. This lim- 
iting value of r, r, say, may be calcu- 
lated [either by brute force, or by 
analytic methods developed in (8)], 
and is as set out in the final line in 
Table 1. For r >r., there ensues a 
regime of chaos, in which there exist 
an uncountable number of initial points 
No for which the system does not even- 
tually settle into any cycle (that is, is 
not "asymptotically periodic"). (iv) In 

particular, at yet larger values of r (r> 
3.102 for Eq. 1, and r> 2.828 for Eq. 
2), Eqs. 1 and 2 may be shown to 
have cycles with period 3; that is, solu- 
tions such that Nt+3 = Nt # Nt+l -. 
Nt,2. But Li and Yorke (9) have re- 
cently proved an elegant and abstract 
mathematical theorem, which states 
that if the general difference equation, 
Eq. 3, has a 3-point cycle, it necessarily 
follows that for the same parameter 
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values there are cycles of period n, 
where n is any positive integer, and fur- 
thermore there exist an uncountable 
number of initial points for which the 
system is not even asymptotically pe- 
riodic. Li and Yorke's general theorem 
for cycles of period 3 may be extended 
(8) to show that equations of the 
generic form of I and 2 will enter a 
regime of chaos, with an uncountable 
number of cycles of integral period 
along with an uncountable number of 
aperiodic solutions, beyond the limiting 
value r,. defined above. 

The dynamical behavior of Eqs. 1 
and 2 in this chaotic regime, r> r,, is 
illustrated in Fig. 1, d, e, and f. Figure 
1, d and e, are for the same value of 
r, and differ only in their initial popu- 
lation value. Note that either of these 
figures, if looked at only over particular 
short time intervals, could convey the 
impression of being locked into a 3- 
point cycle; around this value of r 
there is a tendency to be "captured" 
into almost-periodic 3-point cycles, in 
between episodes of apparently chaotic 
behavior. A detailed understanding of 
these properties remains an interesting 
mathematical problem, related to that 
of determining what fraction of the 
totality of initial points converge to a 
3-point cycle, what fraction to a 5-point 
cycle, and so on, ending with a deter- 
mination of the fraction of initial points 

which lead to aperiodic behavior. For 
relatively large values of r beyond r% 
(for example, Fig. If) the population 
variations become more severe, al- 
though the mean population value may 
be shown to remain around K; as r 
becomes larger, this mean value is in- 
creasingly constituted of a few fairly 
large population values, together with 
long sequences of very low population 
values. 

The above discussion is restricted to 
single species systems obeying differ- 
ence equations. However, similar con- 
siderations are likely to apply, a fortiori, 
to multispecies situations. 

As one among many possible exam- 
ples, consider a simple difference equa- 
tion model for competition between two 
species 

NV(t + 1) = N2(t)exp{r,[K, - aN(t) - 

a2N2(t) ]/K1} (5a) 
N2(t + 1 ) = N2(t)exp{r2K2 - 

Ca2INi(t) - ,22N2,(t)]/K2} (5b) 
Just as Eq. 1 may be regarded as a 
difference equation analog of the logis- 
tic, Eq. 5 may be regarded as an analog 
of the familiar Lotka-Volterra differen- 
tial equation model for two-species 
competition. As usual, ri are the growth 
rates, K, the carrying capacities, and 
aij the competition coefficients. The 
dynamical properties of such Lotka- 
Volterra differential equations are 
straightforward: the two species coexist, 
with a globally stable equilibrium point, 
if and only if 

D> O (6) 
where D is defined as D = at1a2)2 - 

a12a.21. Failing this, one or the other 

species is extinguished. But for the sys- 
tem of difference equations, Eq. 5, the 
criterion for the existence of a stable 
two-species equilibrium point is more 
restrictive, namely 

A >D >0 [if A <2] 
A > D >2A-4 [if A >2] 

(7a) 
(7b) 

Here D is as above, and A is defined as 
A= (a,lK,1/r,N2, ) + (a99K1/rtN1V ), 
with N* and N2* the equilibrium solu- 
tions of Eq. 5. [The methodology for 
stability analysis of such two-species 
difference equations is indicated else- 
where (6)]. If the right-hand side of 
Eq. 7a is violated, one of the species is 
eliminated, as in the differential equa- 
tion model, Eq. 6. If any of the other 
inequalities in Eq. 7 is transgressed, the 
two species continue to coexist, but 
there is no longer a stable equilibrium 
point. Numerical studies reveal a re- 
gime of stable cycles, giving way to one 
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of apparent chaos, as for the single 
species systems discussed in detail 
above. The behavior of the system of 
Eq. 5 in these various regimes is illus- 
trated in Fig. 2. 

Equations 1 and 2 are two of the 
simplest nonlinear (density dependent) 
difference equations that can be written 
down. Their rich dynamical structure, 
and in particular the regime of appar- 
ent chaos wherein cycles of essentially 
arbitrary period are possible, is a fact 
of considerable mathematical and eco- 
logical interest, which deserves to be 
more widely appreciated. Without an 
understanding of the range of behavior 
latent in such deterministic difference 
equations, one could be hard put to 
make sense of computer simulations or 
time-series analyses in these models. 

ROBERT M. MAY 

Biology Department, Princeton 
University, Princeton, New Jersey 08540 
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The geographical distribution and the 
nature of human schistosomiasis re- 
quire special care in the selection of 
chemotherapeutic agents for the treat- 
ment of this infection. More than 200 
million human subjects are infected 
with schistosomes and the incidence is 
on the increase. Even a low frequency 
of delayed serious complications, pro- 
duced by mutagenic, teratogenic, and 
carcinogenic actions of a drug, can in- 
volve a large absolute number of in- 
dividuals. Populations infected with 
schistosomes are not protected by na- 
tional drug laws or regulatory agencies. 
Moreover, in an undetermined number, 
and possibly the majority, of subjects 
infected with Schistosoma hematobiumn, 
overt clinical and pathological mani- 
festations disappear in adulthood (1). 
This must be taken into account when 
considering a drug for the mass treat- 
ment of children whose life expect- 
ancies are longer and whose reproduc- 
tive potentials are greater than those 
of adults. As was stated by Rubidge 
et al. (2), "urinary tract bilharziasis is 
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a relatively mild disease in South Africa 
and serious sequelae are rare. Hence, 
therapy must be safe." 

It is estimated that during the past 6 
years, in Brazil, Africa, and the Middle 
East, at least 700,000 human subjects 
infected with S. helmatobilum and S. 
mansoni have been treated with the anti- 
schistosomal thioxanthenone derivative 
hycanthone (the drug is ineffective in 
infections produced by S. japonicumi 
prevalent in mainland China and the 
Philippines) (3). Reports from a varie- 
ty of laboratories have indicated that 
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Fig. 1. Mutagenic activity: none detec- 
table (less than 0.1 percent as active as 
hycanthone). Antishistosomal activity: 
intramuscular, 0.4; oral, 0.3. 

a relatively mild disease in South Africa 
and serious sequelae are rare. Hence, 
therapy must be safe." 

It is estimated that during the past 6 
years, in Brazil, Africa, and the Middle 
East, at least 700,000 human subjects 
infected with S. helmatobilum and S. 
mansoni have been treated with the anti- 
schistosomal thioxanthenone derivative 
hycanthone (the drug is ineffective in 
infections produced by S. japonicumi 
prevalent in mainland China and the 
Philippines) (3). Reports from a varie- 
ty of laboratories have indicated that 

0,oO 

bNe 
CH3 

CH3 

Fig. 1. Mutagenic activity: none detec- 
table (less than 0.1 percent as active as 
hycanthone). Antishistosomal activity: 
intramuscular, 0.4; oral, 0.3. 

hycanthone is mutagenic (4) and tera- 
togenic (5), and that it induces pro- 
phage (6), mitotic crossing-over (7), 
cytogenic changes (8), and malignant 
transformations (9); hycanthone is car- 
cinogenic in mice infected with S. 
mansoni (10). As pointed out by Firm- 
inger (11), a report (12) which seem- 
ingly did not support the last observa- 
tion was based on such a small number 
of animals that no significant negative 
results could have been obtained. Since 
a number of compounds chemically re- 
lated to hycanthone exhibit antischisto- 
somal activity, the question arose 
whether structural alterations can bring 
about a dissociation of undesirable 
toxicological properties from chemo- 
therapeutic activity. Data summarized 
below indicate that this is the case. 

A chloroindazole analog (IA-4, struc- 
ture in Table 1) of hycanthone has the 
same antischistosomal activity in mice 
as hycanthone (13), while its acute 
toxicity and its hepatoxicity are lower 
(13, 14). Compound IA-4 failed to 
induce demonstrable malignant trans- 
formations in cells infected with Rau- 
scher virus (9). Its mutagenic activity 
was found to be lower in Salmonella 
(15), bacteriophage T4 (15), and 
mouse lymphoblasts (16); no mutagenic 
effects were detected in yeast (17); no 
cytogenetic effects were detected in rat 
bone marrow cells (18). Furthermore, 
in contrast to hycanthone and to a num- 
ber of chemical carcinogens, IA-4 failed 
to induce breaks in rat liver DNA (19). 
Another indazole analog (IA-3) had 
lower antischistosomal activity; but 
since there is decreased acute toxicity, 
the chemotherapeutic index of IA-3 
approximately equals that of IA-4 (13). 

We found that chloro substitution in 
position 8 produced a marked decrease 
in the acute toxicity of the indazole 
analogs for mice. For example, the 
median intramuscular lethal dose 
(LD-,,,) of IA-3 and of IA-4 was more 
than seven times higher than that of the 
corresponding deschloro derivatives. 

In further studies of the effect of 
structural modifications on antischisto- 
somal activity and on mutagenicity, N- 
oxides of active thioxanthenones and 
benzothiopyranoindazoles were pre- 
pared. The parent bases were oxidized 
with m-chloroperbenzoic acid in dichlo- 
romethane solution, and after chroma- 
tography (ALO.0) the N-oxides so ob- 
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soluble methanesulfonate salts. N-Oxi- 
dation at the diethylaminoethyl group 
consistently resulted in a marked reduc- 
tion in mutagenicity for Salmionella 
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Hycanthone Analogs: Dissociation of Mutagenic Effects 
from Antischistosomal Effects 

Abstract. N-Oxidation at the diethylamino group of hycanthone, of lucanthone, 
and of two chlorobenzothiopyranoindazoles resulted in a marked reduction in 
mutagenic activity, while antischistosomcal activity was retained or even enhanced. 
Introduction of chlorine into the 8-position of benzothiopyranoindazoles reduced 
acute toxicity but had no effect on chemotherapeutic potency. These dissociations 
of biological activities indicate that safer antischistosom7al compounds of this class 
can be developed. 
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