vironment from a wide variety of biological sources as well as from petroleum released by natural seeps and man's activities, and that branched and cyclic alkanes accumulate at the interface as a result of a complex combination of physical and biological influences. The data that have been collected so far show that the types and amounts of hydrocarbons in the surface film along the northern Gulf Coast have remained fairly constant during the study period.

> ENOCH J. LEDET JOHN L. LASETER*

Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70122

References and Notes

- J. M. Brooks, A. D. Fredericks, W. M. Sackett, J. W. Swinnerton, Environ. Sci. Technol. 7, 639 (1973).
 P. L. Parker, J. K. Winters, J. Morgan, Baseline Studies of Pollutants in the Marine
- Environment and Research Recommendations: The I.D.O.E. Baseline Conference (National Science Foundation, Washington, D.C., 1972). C. B. Koons and P. H. Monaghan, Trans. (National
- Gulf Coast Assoc. Geol. Soc. 16 (No. 8), (1973).

- 170 (1973).
 M. Barbier, D. Jody, A. Saliot, D. Tourres, Deep-Sea Res. 20, 305 (1973).
 E. M. Levy, Water Res. 5, 723 (1971).
 W. D. Garrett, Limnol. Oceanogr. 10, 602 (1965); Deep-Sea Res. 14, 221 (1967).
 T. F. Bidleman and C. E. Olney, Science 183 516 (1974).
- F. Dittana
 F. Dittana
- K. A. Duce, J. G. Quinn, C. E. Omey, G. K. Piotrowicz, B. J. Ray, T. L. Wade, *ibid.* 176, 161 (1972).
 W. D. Garrett, Impact of Petroleum Spills on the Chemical and Physical Properties of the Air/Sea Interface (Report 7372, Naval Research Laboratory, Washington, D.C., 1972); J. Geophys. Res. 73, 5145 (1968).
 P. Miaet H. Kator, C. Onnenheimer, J. L.
- R. Miget, H. Kator, C. Oppenheimer, J. L. Laseter, E. J. Ledet, Anal. Chem. 46, 1154
- Laseter, E. J. Ledet, Anal. Chem. 40, 1134 (1974).
 11. J. L. Laseter, G. C. Lawler, G. W. Griffin, Anal. Lett. 6, 735 (1973); J. L. Laseter, G. C. Lawler, C. H. Walkinshaw, J. D. Weete, Phytochemistry 12, 817 (1973).
 12. Gas chromatographic methods revealed that the alkanes revealed that
- the alkanes present in the heptane eluate averaged 35 $\mu g/m^2$. This apparent discrepancy with the total weight values reported for this fraction is probably due to a number of factors: (i) a substantial portion of the alkanes present are not chromatographically analises present are not circulatographically resolved and are expressed as a base-line "hump"; (ii) some of the components may have molecular weights above C_{40} and do not emerge below 280°C; and (iii) elemental sulfur (produced in large amounts in the vicinity) will concentrate in the heptane eluate. Oppenheimer, R. Miget, H. Kator, un 13.
- published results.
- published results.
 14. H. Kator, in *Proceedings of Microbial Degra-dation of Oil Pollutants*, D. A. Ahearn and S. P. Meyers, Eds. (Georgia State Univ. Press, Atlanta, 1972), p. 47; A. Jobson, F. D. Cook, D. W. S. Westlake. Appl. Microbiol. 23, Westlake, Appl. Microbiol. 23, W 1082 (1972). 15. R. J. Miget, C. H. Oppenheimer, H. I. Kator,
- R. J. Miget, C. H. Oppenneimer, H. I. Kator, P. A. LaRock, paper presented at the Joint Conference on the Prevention and Control of Oil Spills, New York, 1969. J. D. Weete, S. Vanketeswaran, J. L. Laseter,
- 16. 3
- D. Weete, S. Vanketeswaran, J. L. Läseter, *Phytochemistry* 10, 939 (1971).
 T. F. Lytle, J. S. Lytle, P. L. Parker, *Gulf Res. Rep.* 4 (No. 2), 214 (1973).
 Supported by funds provided by the Offshore Forder Line Line Line (1975).
- Ecology Investigation Project administered through the Gulf Universities Research Con-sortium. We thank D. Carlisle and L. M. Freyder for technical assistance. Address correspondence to J.L.L.

5 June 1974; revised 15 July 1974

18 OCTOBER 1974

Specificity of Antibodies: Primary Structural Basis of

Hapten Binding

Abstract. The primary structure of the 83 residues of the NH_{2} -terminus of the V_{H} region was determined for each of three different antibodies to hapten which were produced in inbred guinea pigs. Each antibody had a different and distinctive primary structure within each of the two "hypervariable" regions (Hv1 and Hv2) included in the analyzed part of the variable region of the heavy chain. The sequences of Hv1 and Hv2 in the three antibodies were either unique or of restricted variability compared with those of "normal" immunoglobulin G2. Further implication of Hv1 and Hv2 in contributing to ligand-binding specificity of antibodies came from the placement of residues modified by affinity labeling reagents in these hypervariable regions.

The accurate correlation of the primary structures of antibodies with their ligand-binding specificities has been a long-term goal of immunologists. This correlation would allow them (i) to better describe the "active" sites of antibodies and eventually place amino acid residues contributing to antigen binding in their actual three-dimensional array; (ii) to infer the magnitude of genetic information for amino acid sequences of antibodies transmitted through the germ line; and (iii) to use distinctive sequences of antibodies as markers for lines of B (bone marrow derived) lymphocytes and plasma cells in order to better understand the regulation of the immune response in vivo.

We used inbred guinea pigs as donors of antibodies specific for the dinitrophenyl (DNP), p-azobenzenearsonate (ARS), or *p*-azobenzenetrimethylammonium (TMA) haptens to circumvent that genetic polymorphism present in an outbred population which is expressed as allotypic differences among proteins. Different individuals, immunized with the same antigen according to the same regimen, might be expected to produce antibodies with the same or similar binding-site structure because inbred animals inherit the same structural genes for antibodies and any alterations of these genes during somatic cell division followed by clonal selection would occur within animals with the same genetic background.

In a primary structural analysis of the heavy chain (γ_2 chain) from the most abundant isotype of guinea pig antibody, immunoglobulin G2 (IgG2), we isolated and rigorously aligned eight fragments from a CNBr digest of "normal" γ_2 chain, accounting for its entirety (1). Since "normal" IgG2 is a mixture of molecules with different binding specificities, we reasoned that fragments with a single amino acid sequence obtained from such a pool would not be directly involved in determining antigen binding. On the other hand, variability at a given residue position might be a marker for those segments of the molecule imparting antigen-binding specificity. A single primary structure was found for five COOH-terminal fragments, totaling 306 residues (2), and was expected because others have characterized two "active" fragments of antibody, Fab and Fv, each of which retained a ligand-binding site but lacked COOH-terminal regions of the parent molecules (3).

Our attention was focused on three CNBr fragments of guinea pig γ_2 chain comprising V_H, the NH₂-terminal quarter of heavy chain wherein sequences of myeloma proteins differ, because they contained those residue positions specifically modified by affinity labeling reagents (4). These chemically reactive analogs of antigen determinants are concentrated in binding sites of antibodies where they may react covalently with an appropriate amino acid residue, provided one is situated close enough to the rigidly bound reagent (5). When we used the affinity labeling reagents MNBDF (6), BADL, and BAAT to modify anti-DNP or anti-ARS, the specifically substituted residues were found within C-1-n, C-1- a_1 , and C-1- a_2 (7). These three fragments contain the \sim 140 residues of the NH₂-terminus of γ_2 chain (1), and when derived from "normal" heavy chain each contains all or most of one short segment of highly variable primary structure-residues N31 to N35, N48 to N59, and N99 to N118-called "hypervariable" regions Hv1, Hv2, and Hv3, respectively (8). These Hv regions are surrounded by sections of V_{II} which appear to each have a single sequence, except where alternative residues have been detected at N2, N16, and N79 (Fig. 1). Analogous "hypervariable" segments in human and murine light (L) chains have been detected by comparison of numerous sequences of V_L region from

myeloma proteins (9). Comparison of the first few sequences determined for V_H of human myeloma proteins indicated some segments of "hypervariability" (10) which were more clearly defined when more primary structural data for many myeloma proteins became available and after the V_H sequences were arbitrarily segregated into subgroups on the basis of sequence relatedness (see 11). However, myeloma $V_{\rm H}$ sequences show variation outside the Hv regions and extensive differences between two V_H regions from proteins of different subgroups. The primary structure of guinea pig V_H outside of the Hv regions is more restricted in heterogeneity as compared to the homologous part of human myeloma heavy chains. Particularly, the many subgroups of human V_{H} , defined by linked sequence variations outside Hv regions, are apparently not expressed in the guinea pig. Thus we expected that correlations of sequence with antigen-binding specificity would be more easily obtained with antibodies from inbred guinea pigs.

If Hv regions determine ligand-binding specificity, these should have a single or restricted primary structure in particular antibodies compared with "normal" IgG2. Furthermore, each specificity would be expected to be associated with its own distinctive Hv primary structures. The primary structures of N1 to N83 of $V_{\rm H}$, including Hv1 and Hv2, have been determined for purified antibodies of three different

Table 1. Residue positions of antibodies modified by affinity labeling reagents within or adjacent to hypervariable regions.

Decion	Anti-D	Anti-			
Region	MNBDF	BADL	ARS BAAT		
Hv1	Tyr 32/33	Tyr 33	Trace		
Hv2	Tyr 60	Trace	Lys 59		
Hv3	Tyr ?	Trace	Trace		

specificities (12). The results of these analyses (Fig. 1) indicated (i) that the three antibodies to haptens have a much more restricted primary structure in Hv1 and Hv2 than "normal" IgG2 does; (ii) that the primary structures of both Hv1 and Hv2 are different for each antibody to hapten and correlate with ligand-binding specificity in that each preparation raised to the same determinant contained the same distinctive residues at "variable" positions; and (iii) those sections of V_H surrounding Hv regions from N1 to N83 have the same single amino acid sequence in all three antibodies to haptens and in "normal" IgG2, except at positions N2, N16, and N79. These observations suggest that the Hv regions have a major role in determining the antigen-binding specificity of antibodies. This suggestion is further supported by the placement of residues modified by affinity labeling within or immediately adjacent to Hv1 and Hv2 at N33, N59, and N60 (Table 1 and Fig. 1). The tyrosyl residue at N33, modified by BADL, and the lysyl residue at N59, substituted by BAAT,

are distinctive of the anti-DNP and anti-ARS specificities, respectively. Finally, analysis of the three-dimensional structure of an Fab fragment from a human myeloma protein by x-ray crystallography (13) reveals a shallow trough made up of residues in positions corresponding to those in the three Hv segments apparent in guinea pig $V_{\rm H}$ and in the analogous hypervariable segments defined in human and mouse L chains (9). Thus the Hv regions appear to be close to each other within the antibody molecule in its native configuration.

Our data suggest that the structural genes for many V_H regions with different antigen-binding specificities are inherited and that different individuals and different precursor cells in the same animal can express the same or very similar V_H structural genes. As Fig. 1 indicates, antibodies to haptens produced in inbred guinea pigs are not homogeneous, but many of the antibodies of a given specificity have the same amino acid at a given residue position in Hv1 and Hv2. Others have found, using immunochemical methods, that different individuals of certain inbred strains of mice make significant fractions of anti-ARS or antibody to phosphorylcholine, which have the same or closely similar binding-site structures (14). Further support for inheritance of $V_{\rm H}$ genes for particular antibody specificities comes from the repeated occurrence, in a selectively bred rabbit family, of antibodies to carbo-

		1										10											
Normal		Glu	v	7 0	Jln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	١	1	Ser	Leu	Arg —	
Anti-AF	RS	Glu	Glu	0	Jln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Se	r	Ser	Leu	Arg —	
Anti-Dl	NP	Glu	Glu		Gln	Leu	Val	Ģlu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	A	la	Ser	Leu	Arg —	
Anti-TM	ΛA	Ġlu	Val		Jln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly		ys	Ser	Leu	Arg —	
•										20				U.1							40		
20								-	-	30					-		-			~	40	D	
— Leu	Ser	Cys	Val	Ala	Ser	Gly	Phe	h Th	· Ph	e Ser		v	v	V	v	v	Trp	lle	Arg	Gln	Ala	Pro –	
Leu	Ser	Cys	Val	Ala	Ser	Gly	Phe	Th	• Ph	e Ser	S	er	Tyr	Thr	Met	lyr	Trp	lle	Arg	Gln	Ala	Pro –	•
— Leu	Ser	Cys	Val	Ala	Ser	Gly	Phe	Th	Ph	e Ser	S	er	Tyr	Uyr)	Met	Ala	Trp	lle	Arg	Gln	Ala	Pro –	-
— Leu	Ser	Cys	Val	Ala	Ser	Gly	Phe	Th	Ph	e Ser	A	.sn*	Tyr	Trp	Met	Asn	Irp	ne	Arg	Gin	Ala	Pro –	-
									50	Hv2										(50		
Gly	Ive	Gly	Leu	Glu	Trn		v T	'nr	50 V	Hv2	v	v		v	Glv	v	Asx	Ile	v	, 	50 Tyr 4	Ala As	x Ser —
— Gly — Gly	Lys Lys	Gly	Leu	Glu Glu	Trp		v T e* S	'hr er	50 V	Hv2 Ile	v Ser	v	* S	v er*	Gly Ser*	v Ser*	Asx Tvr*	Ile Ile	U vs		50 Fyr A Fyr A	Ala As Ala As	x Ser — x Ser —
Gly Gly Gly	Lys Lys Lys	Gly Gly Gly	Leu Leu Leu	Glu Glu Glu	Trp Trp Trr		v T e* S al T	hr er 7 hr	50 V Jyr Frp	Hv2 Ile Ile Ile	v Ser Glv	v Ser Asi	* So n T	v er* hr	Gly Ser* Gly	v Ser* Gly	Asx Tyr* Ser	Ile Ile Ile	v Gly*		50 Tyr A Tyr A	Ala As Ala As Ala As	x Ser — x Ser — x Ser —
— Gly — Gly — Gly — Gly	Lys Lys Lys Lys	Gly Gly Gly Gly	Leu Leu Leu Leu	Glu Glu Glu Glu	Trp Trp Trp Trp		v T e* S al T e S	hr er hr er*	50 V Tyr Frp Ala	Hv2 Ile Ile Ile Ile	v Ser Gly Asn	v Ser Asi Ser	* Son T	v er* hr sp	Gly Ser* Gly Gly	v Ser* Gly Ser	Asx Tyr* Ser Ser	Ile Ile Ile Ile	V Glys Tyr		50 Tyr A Tyr A Tyr A Tyr A	Ala As Ala As Ala As Ala As	x Ser — x Ser — x Ser — x Ser — x Ser —
— Gly — Gly — Gly — Gly	Lys Lys Lys Lys	Gly Gly Gly Gly	Leu Leu Leu Leu	Glu Glu Glu Glu	Trp Trp Trp Trp		v T e* S al T e S	hr er hr er*	50 V Cyr Crp Ala	Hv2 Ile Ile Ile Ile	v Ser Gly Asn	v Ser Asi Ser	* Son T • A	v er* hr sp	Gly Ser* Gly Gly	v Ser* Gly Ser	Asx Tyr* Ser Ser	Ile Ile Ile Ile	v Gly* Tyr		50 Tyr A Tyr A Tyr A	Ala As Ala As Ala As Ala As	x Ser — x Ser — x Ser — x Ser — x Ser —
— Gly — Gly — Gly — Gly	Lys Lys Lys Lys	Gly Gly Gly Gly	Leu Leu Leu Leu	Glu Glu Glu Glu	Trp Trp Trp Trp		v T e* S al T e S 0	hr er hr er*	50 v Cyr Frp Ala	Hv2 Ile Ile Ile Ile	v Ser Gly Asn	v Ser Asi Ser	* So n T · A	v er* hr sp	Gly Ser* Gly Gly	v Ser* Gly Ser	Asx Tyr* Ser Ser	Ile Ile Ile Ile	v Gly* Tyr		50 Tyr A Tyr A Tyr A Tyr A	Ala As Ala As Ala As Ala As	x Ser — x Ser — x Ser — x Ser —
Gly Gly Gly Gly Val	Lys Lys Lys Lys Lys	Gly Gly Gly Gly Gly	Leu Leu Leu Leu	Glu Glu Glu Glu	Trp Trp Trp Trp Trp		v T e* S al T e S 0 e Se	hr er hr er*	50 v Cyr Trp Ala	Hv2 Ile Ile Ile Ile	v Ser Gly Asn	v Ser Ast Ser	* S n T · A	v er* hr sp	Gly Ser* Gly Gly	v Ser* Gly Ser Leu	Asx Tyr* Ser Ser Tyr	Ile Ile Ile 80 Leu	V Gly* Tyr		50 Fyr A Fyr A Fyr A Fyr A	Ala As Ala As Ala As Ala As	x Ser — x Ser — x Ser — x Ser —
Gly Gly Gly Gly Val Val	Lys Lys Lys Lys Lys Lys	Gly Gly Gly Gly Gly	Leu Leu Leu Arg Arg	Glu Glu Glu Glu Phe Phe	Trp Trp Trp Trp Trp		v T e* S al T e S 0 e Se e Se	hr er hr er* r Ar r Ar	50 V Fyr Frp Ala g A	Hv2 Ile Ile Ile Ile Sp As	v Ser Gly Asn p G	v Ser Asi Ser ly L	* S n T · A	v er* hr sp Asn	Gly Ser* Gly Gly Thr	v Ser* Gly Ser Leu Val	Asx Tyr* Ser Ser Tyr Tyr	Ile Ile Ile 80 Leu Leu	Uys Gly* Tyr		50 Fyr A Fyr A Fyr A Fyr A Fyr A Fyr A Fyr A	Ala As Ala As Ala As Ala As	x Ser — x Ser — x Ser — x Ser — x Ser —
Gly Gly Gly Gly Val Val Val	Lys Lys Lys Lys Lys Lys Lys Lys	Gly Gly Gly Gly Gly Gly Gly	Leu Leu Leu Arg Arg	Glu Glu Glu Phe Phe Phe	Trp Trp Trp Trp Trp Thr Thr		v T e* S al T e S 0 e Se e Se e Se	hr er hr er* r Ar r Ar r Ar r Ar	50 V Fyr Frp Ala g As g As	Hv2 Ile Ile Ile Ile Sp As Sp As Sp As	v Ser Gly Asn p G p G p G	v Ser Ası Ser ly L ly L ly L	* S n T · A .ys A .ys A .ys A	v er* hr sp Asn Asn Asn	Gly Ser* Gly Gly Thr Thr Thr	v Ser* Gly Ser Leu Val Leu	Asx Tyr* Ser Ser Tyr Tyr Tyr	Ile Ile Ile 80 Leu Leu	Uys Gly* Tyr Glr Glr Glr Glr Glr	n Me n Me	50 Fyr A Fyr A Fyr A Fyr A et — et — et —	Ala As Ala As Ala As Ala As	x Ser — x Ser — x Ser — x Ser — x Ser —

Fig. 1. The NH₂-terminal amino acid sequences (N1 to N83) of V_H from normal IgG2 and three antibodies to haptens through hypervariable regions Hv1 and Hv2. Residue positions having alternative amino acids are shown in boxes. Those residues modified by affinity labeling reagents are circled (Table 1). A residue position bearing an asterisk shows the predominant amino acid although other amino acids have been detected. The v positions shown in the sequence of the normal γ_2 chain indicate variable positions at which two or more alternatives have been identified. hydrate with the same or closely related site structures (15). To define a minimum number of structural genes for $V_{\rm L}$, Cohn and his colleagues considered that only amino acid interchanges outside "hypervariable" regions may be ascribed to different germ line genes, while changes within these regions may arise due to alteration of V genes during somatic cell division (16). Each of the three guinea pig antibodies to haptens has a distinctive pattern of residues at those variable positions outside the Hv regions, at N2, N16, and N79. Thus a minimum of three V_{H} genes seems necessary for the three ligand-binding specificities. However, since each of these $V_{\rm II}$ genes apparently results in a predominant product having a distinctive sequence in Hv1 and Hv2 as well, such coarse reproducibility in expression by different individuals would seem most simply accomplished by encoding the distinctive Hv1 and Hv2 regions in the same V_{II} genes. The analysis of Hv3 from these antibodies, which seems to be less restricted in primary structure than Hv1 and Hv2, may uncover variability including useful markers for assessing whether alterations in $V_{\rm H}$ genes may occur during the proliferation of plasma cell precursors. Meanwhile, the distinctive sequences of Hv1 and Hv2 are themselves proving useful markers for following the fate of clones of cells expressing the same or similar $V_{\rm H}$ genes in animals caused to become tolerant or unresponsive, deviated with respect to isotype of antibody produced, or idiotype suppressed in order to probe the normal regulation of the immune response.

JOHN J. CEBRA

PETER H. KOO, ALEX RAY Department of Biology, John's Hopkins University, Baltimore, Maryland 21218

References and Notes

- B. K. Birshtein, K. J. Turner, J. J. Cebra, Biochemistry 10, 1 (1971); D. C. Benjamin, Q. Z. Hussain, J. J. Cebra, *ibid.* 11, 3641 Q. Z. (1972).
- (1972).
 2. K. J. Turner and J. J. Cebra, *ibid.* 10, 9 (1971); B. K. Birshtein, Q. Z. Hussain, J. J. Cebra, *ibid.*, p. 18; T. M. Trischman and J. J. Cebra, *ibid.*, in press; D. E. Tracey and J. J. Cebra, *ibid.*, in press.
 3. R. R. Porter, *Biochem. J.* 73, 119 (1959); D. L. Bran, M. C. M
- R. R. Porter, Biochem. J. 73, 119 (1959); D. Inbar, J. Hochman, D. Givol, Proc. Natl. Acad. Sci. U.S.A. 69, 2659 (1972).
 E. M. Press, G. W. J. Fleet, C. E. Fisher, Prog. Immunol. 1, 233 (1971); J. Haimo-vich, H. N. Eisen, E. Hurwitz, D. Givol, Biochemistry 11, 2389 (1972); J. J. Cebra, A. Ray, D. Benjamin, B. Birshtein, Prog. Immunol. 1, 269 (1971).
 L. Wofsy, H. Metzger, S. J. Singer, Biochem-istry 1, 1031 (1962): D. Givol, P. H. Straus-
- L. Worsy, H. McGgel, S. J. Singer, Dischmi-istry 1, 1031 (1962); D. Givol, P. H. Straus-bach, E. Hurwitz, M. Wilchek, J. Haimovich, H. N. Eisen, *ibid.* 10, 3461 (1971).

- 6. Abbreviations for affinity labeling reagents signify: MNBDF, *m*-nitrobenzenediazonium tetrafluoroborate; BADL, N^{α} -bromoacetyl- N^{ϵ} dinitrophenyl-lysine; BAAT, N-bromoacetylmono(*p*-azobenzene arsonic acid)-L-tyrosine; $V_{\rm H}$ and $V_{\rm L}$, variable regions of heavy and light chains, respectively; $C_{\rm H}1$, $C_{\rm H}2$, and $C_{\rm H}3$, constant regions of heavy chain; CNBr fragment C-1-n spans N1 to N34 and encompasses the Hv1 region, C-1-a, spans N35 to N83 and encompasses the Hv2 region, and C-1-a₂ spans N84 to N120; anti-DNP, antimono(p-azobenzene arsonic acid)-L-tyrosine: C-1-a, spans N84 to N120; anti-DNP, anti-ARS, anti-TMA, antibody to DNP, ARS, and
- AKS, anti-IMA, antibody to DNP, AKS, and TMA, respectively.
 7. A. Ray and J. J. Cebra, *Biochemistry* 11, 3647 (1972); P. H. Koo and J. J. Cebra, *ibid.* 13, 184 (1974).
 8. B. K. Birshtein and J. J. Cebra, *ibid.* 10, 4930 (1971); D. C. Benjamin and J. J. Cebra, in preparation
- in preparation.
- T. Wu and E. A. Kabat. J. Exp. Med. 9. 132, 211 (1970).
- 10. E. M. Press and N. W. Hogg, Nature (Lond.) 223, 807 (1969); B. A. Cunningham, M. N. Pflumm, V. Rutishauser, G. M. Edelman, Proc. Natl. Acad. Sci. U.S.A. 64, 997 (1969).
- J. M. Kehoe, J. D. Capra, Proc. Natl. Acad. Sci. U.S.A. 68, 2019 (1971). 11.
- 12. Groups of 10 to 12 guinea pigs (strain 13) were immunized by footpad injection of 0.4 to 0.6 mg of DNP-, ARS- or TMA-hemocyanin

N'-Nitrosonornicotine in Tobacco

Abstract. N'-Nitrosonornicotine, a potential carcinogen, has been positively identified in unburned tobacco. The amount in commercial U.S. tobacco products is between 1.9 to 88.6 parts per million, one of the highest values of an environmental nitrosamine yet reported. The amount in food and drink rarely exceeds 0.1 part per million. This compound is the first example of a potential organic carcinogen isolated from tobacco.

A number of N-nitroso compounds are carcinogenic or mutagenic (or both) in a wide variety of experimental animals (1). This biological activity has been demonstrated repeatedly and, although there is no direct evidence that these compounds are human carcinogens, they should be regarded as potential hazards. Because N-nitrosamines are easily formed by the reaction of secondary amines with nitrite and, to a lesser extent, by the reaction of tertiary amines with nitrite (2) and because various environmental sources contain both nitrite and the appropriate amine precursors, an intensive search has begun for N-nitrosamines in food, drink, and other materials ingested or inhaled by man (3). It is now the consensus of opinion that N-nitrosamines should be considered as potential health hazards at concentrations of part per billion (ppb, microgram per kilogram) (4).

Tobacco smoke is carcinogenic in the experimental animal, but the overall biological activity can be explained only partially by the components isolated to date (5). Following the suggestion of Druckrey and Preussmann that nitrosamines may contribute, at least in part, to the observed carcino-

genicity (6), several investigators have identified varying quantities of volatile nitrosamines in cigarette smoke (3, 7). We have reported the identification of a nonvolatile nitrosamine, N'-nitrosonornicotine (NNN), in the unaged smoke of a popular American blended cigarette without a filter tip (85 mm) at a concentration of 137 ng per cigarette (7). This compound has also been reported in the smoke of cigarettes made from tobacco rich in nornicotine (8). N'-Nitrosonornicotine induces in mice multiple pulmonary adenomas with local invasion of the lung and the bronchi (9). Since our goal is to identify the source of potential hazardous substances in tobacco smoke and to devise methods to minimize their precursors, we have analyzed unburned tobacco for NNN.

We now report that various types of tobacco products contain NNN at 2 to 90 μ g/g (dry weight of the tobacco) [2 to 90 parts per million (ppm)] (Table 1). This is to our knowledge the highest concentration of a positively identified N-nitrosamine yet reported in an environmental source. N-Nitrosamines in meat, fish, beverages, and related materials rarely exceed 0.1 ppm (3).

(keyhole limpet) in complete Freund's adju-vant. Each preparation of antibodies—five anti-DNP ($K_a \approx 10^{\circ}$ liter/mole), three anti-ARS ($K_a \approx 5 \times 10^{\circ}$ liter/mole, and two anti-TMA preparations in all—was isolated from the pooled serum taken by cardiac puncture from a group of 10 to 12 animals between days group of 10 to 12 animals between days 1 and 42 after the initial immunization injection. The CNBr fragments C-1-n and C-1-a₁ were isolated from digests of whole antibody molecules (7) and their primary structures molecules (7) and their primary structures were determined both by automatic sequential degradation (7, 8) and by manual Edman degradation of small peptides isolated from enzymic digests of each fragment.
13. R. J. Poljak, L. M. Amzel, H. P. Avery, B. L. Chen, R. P. Phizackerley, F. Saul, Proc. Natl. Acad. Sci. U.S.A. 70, 3305 (1973).
14. M. Kuettner, A. Wang, A. Nisonoff, J. Exp. Med. 135, 579 (1972); H. Cosenza and H. Kohler, Proc. Natl. Acad. Sci. U.S.A. 69, 2701 (1972).

- Kohler, Pro 2701 (1972).
- 15. K. Eichmann and T. J. Kindt, J. Exp. Med. 134, 532 (1971)
- 134, 532 (1971).
 M. G. Weigert, I. M. Cesari, S. Yonkovich,
 M. Cohn, *Nature (Lond.)* 228, 1045 (1970);
 M. Cohn, *Cell Immunol.* 1, 461 (1970).
 Supported by NSF grant GB-38798 and NIH 16.
- 17. grant AI-09652. A.R. was supported by training grant HD-139.
- 3 April 1974