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Mercury: Results on Mass, Radius, Ionosphere, and 

Atmosphere from Mariner 10 Dual-Frequency Radio Signals 

Abstract. Analysis of the radio-tracking data from Mariner 10 yields 6,023,600 
? 600 for the ratio of the mass of the sun to that of Mercury, in very good agree- 
ment with values determined earlier from radar data alone. Occultation measure- 
ments yielded values for the radius of Mercury of 2440 + 2 and 2438 ? 2 
kilometers at laditudes of 20N and 680N, respectively, again in close agreement 
with the average equatorial radius of 2439 ? I kilometers determined from radar 
data. The mean density of 5.44 grams per cubic centimeter deduced for Mercury 
from Mariner 10 data thus virtually coincides with the prior determination. No 
evidence of either an ionosphere or an atmosphere was found, with the data 
yielding upper bounds on the electron density of about 1500 and 4000 electrons 
per cubic centimeter on the dayside and nightside, respectively, and an inferred 
upper bound on the surface pressure of 1JO8 millibar. 

As Mariner 10 flew by Mercury on 
29 March 1974, dual-frequency radio 
transmissions from the spacecraft were 
monitored on Earth. The instrumenta- 
tion and techniques for making these 
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measurements have already been de- 
scribed (1). Mariner 10's trajectory 
(2) allowed Mercury's mass to be esti- 
mated from these data and, because 
the spacecraft was occulted by the 

planet, also afforded investigators the 
opportunity to measure the radius of 
Mercury and to detect any possible 
atmosphere or ionosphere. The results 
of the preliminary analysis of the radio 
data are presented in this report. 

Celestial mechanics. The determina- 
tion of the mass and the second-degree 
terms in the spherical-harmonic expan- 
sion of the gravitational potential of 
Mercury is one of the major objectives 
of the radio-science experiments. Since 
the analysis of these data is in the ini- 
tial stages, we present only preliminary 
findings. 

The spacecraft passed about 700 km 
above Mercury's surface at encounter, 
along a track inclined about 210 
to the equator; only 1 hour from en- 
counter on either side, the spacecraft 
was 36,000 km from the surface, indi- 
cating the very short period during 
which the Doppler tracking data are 
sensitive to even the second-degree 
terms in the gravitational field of Mer- 
cury (3). Of course, these data are 
most sensitive to Mercury's mass, and 
this parameter was estimated with high 
accuracy as follows: Doppler data 
from 8 days before to 3 days after 
encounter were used to estimate the 
six orbital parameters of Mariner 10 
and the mass of Mercury along with 
various subsets of the second-degree 
terms of the gravitational potential. In 
the analyses, the coefficients of all har- 
monics higher than second degree were 
always set equal to zero, and the best 
available knowledge was utilized for 
(i) the planetary and lunar ephemer- 
ides, (ii) the rotation of Earth, (iii) the 
locations of the radio-tracking stations, 
(iv) the acceleration of the spacecraft 
resulting from sunlight pressure, and 
(v) the effect of the propagation 
medium on the radio signals. The ob- 
served sensitivity of the results to 
changes in the parameter set as well 
as in the data set lead us to conclude 
that the ratio of the mass of the sun to 
the mass of Mercury is 6,023,600 + 600 
(4), in very good agreement with the 
value obtained earlier from analyses of 
planetary radar data (5). 

The postfit residuals from all of the 
Mariner 10 solutions were remarkably 
small, the root-mean-square value be- 
ing typically only a few millihertz (6). 

We have not yet been able to deter- 
mine reliably any of the second-degree 
terms in the spherical-harmonic expan- 
sion of the gravitational potential. 
However, our preliminary analysis in- 
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Table 1. Mariner 10 Mercury radius. 

Occul- . . Solar zenith Radius Probable 
tation Latitude Longitude angle (deg) (km) error (km) 

Entry 2.3 ON 67.40E 166.7 2439.6 2 
Exit 68.40N 258.80E 68.4 2438.3 2 

dicates that none is larger than the cor- 
responding coefficient for the moon's 
potential. Further analysis, which will 
include the calibration of the plasma 
contribution to the observable deduced 
from the dual-frequency data, will yield 
more quantitative results for these har- 
monic coefficients for Mercury. 

The density of Mercury deduced 
from the mass and radius (see below) 
determined by Mariner 10, 5.44 g/cm3, 
is virtually identical with the value 
determined from radar observations 
(7). Thus any lingering doubts about 
its validity should now be removed. 

Radio science. The data obtained 
during the spacecraft's entry into, and 
exit from, occultation by Mercury 
have been analyzed to obtain prelimi- 
nary bounds on the density of Mer- 
cury's ionosphere and atmosphere, and 
to deduce the radius of Mercury at the 
entry and exit points of occultation. 
The method used to analyze these 
open-loop and closed-loop data have 
been described elsewhere (8). 

The entry, or immersion, of the 
spacecraft into occultation occurred on 
the nightside of Mercury near a lati- 
tude of 2.3?N and a longitude of about 
67.3?E. The solar zenith angle at the 
point of occulation was about 166.70. 
An analysis of the closed-loop dif- 
ferential, dispersive (S- and X-band) 
Doppler data from the block 4 receiv- 
ers at Deep Space Station (DSS) 14 
(1) showed no indication of any iono- 
spheric layers. The data yielded an 
upper limit for the electron density of 
about 4000 electron/ cm3. Emersion, 
or exit, occurred on the dayside of 
Mercury near a latitude of 68.40N and 
a longitude of 258.8'E. The solar 
zenith angle was about 68.40. No 
clear signature of a dayside ionosphere 
was observed. The open-loop data from 
DSS 14 yielded an upper limit for the 
electron density of about 1500 elec- 
tron/ cm3 (9). 

Neither the X-band nor the S-band 
data provided any indication of prop- 
agation effects through a neutral atmo- 
sphere, but an upper limit can be in- 
ferred from the upper limits of the 
electron density quoted above. Under 
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the assumptions that any charged par- 
ticles present on the dayside are the 
result of photoionization and that the 
ionosphere would be similar to those 
of Venus and Mars, it is possible to 
establish an upper limit for neutral 
particles near the surface of Mercury 
of about 109 particle/cm3. If a con- 
stituent of the largest reasonable molec- 
ular weight, such as argon, is assumed, 
then the surface atmospheric pressure 
would be less than 10-8 mbar. 

Mercury's radius can be deduced 
for two points on its surface from the 
observations of the time of extinction 
and reappearance of the spacecraft 
radio signal and from the relation at 
these times of the position of the cen- 
ter of mass of the planet relative to 
the line of sight from Earth to the 
spacecraft. The accuracy of the radius 
determination depends on that of the 
timing of the occultation events and on 
the accuracy of the ephemeris of the 
spacecraft relative to Mercury. From 
the analysis of the open-loop data ob- 
tained during entry and exit, the times 
for the occultation were determined 
with an error of less than 0.05 second, 
corresponding to a projected error in 
the radius determination of about 250 
m. However, the uncertainty still exist- 
ing in the ephemeris of the spacecraft 
relative to Mercury is the major source 
of error in the radius determination. 
The results are summarized in Table 
1, which also shows the latitudes, 
longitudes, and solar zenith angles at 
the two occultation points as well as 
the probable errors of the radius esti- 
mates. These uncertainties are based 
on the variations in the values of the 
radius when computed with different 
sets of available spacecraft ephemer- 
ides. These uncertainties should even- 
tually be reduced by about an order 
of magnitude. The value of the equa- 
torial radius based on the entry mea- 
surement is very close to the mean radius 
of 2439 ? 1 km obtained from the 
analysis of planetary radar data (5). The 
difference in radius between the two de- 
terminations from the Mariner 10 data 
is less than the current uncertainty in 
each. However, even when these uncer- 

tainties are reduced, it will not be pos- 
sible to use these radius measurements 
to distinguish any overall flattening of 
the planet from local variations in its 
topography. 
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