
short, microvilli appear in regions of 
red cell contact, and with increasing 
time (2 to 3 hours) the microvilli be- 
come numerous, long (up to 6 ,um), 
undulating, and branched (Fig. 2). In- 
deed, at this stage, rosetted Molt-4 
cells exhibit a surface topology barely 
distinguishable from that of "B-type" 
lymphocytes (1-3). However, the re- 
gions with abundant long microvilli 
occur only near sites of contact with 
SRBC; other regions of the lymphoid 
cell periphery may continue to be quite 
bald. Moreover, we do not observe the 
drastic distortion of erythrocyte sur- 
faces that characterizes complement- 
dependent B-cell rosettes (1). In con- 
trast, unrosetted Molt-4 cells, as well as 
cells maintained for up to 3 hours un- 
der rosetting conditions but without 
SRBC, exhibit no change in surface 
topology. 

In more than 90 percent of more 
than 500 rosetted Molt-4 cells counted 
in four series, the lymphocytes' surface 
topologies were clearly distinguishable 
from the resting state. Furthermore, the 
contacts between Molt-4 cells and 
SRBC are mediated by microvilli, as 
reported before for conventional ro- 
setting systems (1). In general the 
microvilli interact mostly with the edges 
of the rosetted erythrocytes, but very 
complex contacts can be observed. 
Quite frequently, for example, the lym- 
phocyte microvilli seem to grasp the 
erythrocytes in tentacle fashion. 

Contact between SRBC and Molt-4 
cells induces a dramatic increase in the 
number, lengths, and complexity of 
the lymphocytes' surface microvilli. It 
seems reasonable to assume that con- 
tact with the erythrocytes produces an 
initially localized, but vigorous increase 
in surface rearrangement. The resulting 
extensive microvilli produce a lym- 
phocyte morphology very similar to 
that seen in B-rosettes (1), and we 
therefore suggest caution in attempts 
to classify T- and B-cells on the basis 
of morphologic criteria alone. 

If Molt-4 cells constitute an adequate 
T-cell model, our findings can explain 
the curious variability of lymphocyte 
surface topology reported for T-cell ro- 
settes (1). The number and lengths of 
microvilli increase (within limits) with 
the duration and extent of red cell con- 
tact; neither of these environmental 
variables is usually well defined. 

However, we suspect more funda- 
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the bland surface features of native 
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thymocytes and freshly cultured Molt- 
4 cells would reflect a quiescent state. 
Contact with appropriate surfaces, such 
as with erythrocytes on exit from the 
thymus, then induces a surface activa- 
tion manifested through the develop- 
ment of elaborate microvilli. The bio- 
chemical and immunological correlates 
of the surface activation phenomenon 
must be explored in order to establish 
its biological significance. 
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part of the linkage group HL-1. 

The histocompatibility complex of 
man, HL-1, includes genes determining 
certain leukocyte and tissue (HL-A) 
antigens and the ability to stimulate in 
mixed lymphocyte culture (MLR-S) 
(1). It is here proposed that HL-1 in- 
cludes a determinant for hypersensitiv- 
ity to ragweed antigen E (IrE) and the 
map order is the first locus of HL-A, 
second locus of HL-A, and IrE. 

This report is based on studies of 
57 subjects of a large Minnesota fam- 
ily. Thirteen members of the B. family 
had histories of respiratory symptoms 
of asthma or rhinitis (or both) during 
the ragweed season in Minnesota 
(August through Sepember). Intra- 
dermal tests were performed with 
1: 500 dilutions of ragweed (Hollister- 
Stier) (2). Antigen E, a purified pro- 
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tein derived from ragweed pollen ex- 
tract, was used for skin testing at 
concentrations from 1 X 10-12 to 
1 X 10-1 mg/ml, and the end point 
dilution with a positive reaction was 
scored. The skin tests were read for 
immediate wheal and flare reactions at 
20 minutes. They were graded on a 
0 to 4+ scale (3). A significant positive 
reaction was considered to be 2+ or 
greater. The antigen E preparation 
(4) gave negative reactions in 14 nor- 
mal, nonatopic individuals ranging in 
age from 14 to 40 years with dilutions 
of 10-12 to 10-1 mg/ml (for all tests 
0.02 ml of each dilution was used). 
Forty-eight ragweed-sensitive individu- 
als ranging from 18 to 48 years of age 
gave positive reactions to the antigen 
E preparations, with end point dilu- 
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Table 1. Estimated frequency of recombination between loci for ragweed sensitivity and HL-A. 

Parent phenotype F* S.E. Pt size 
HL-A 2 + IrE (a).6 .208 <s.05 27i 

HL-A 2 + IrE (a) .26 .08 < .05 27 
HL-A 12 + IrE (b) .22 .08 <.01 27 
HL-A 3-W18 + IrE (c) .89 .10 <.05 9 
HL-A 9 + IrE (d) .71 .12 >.10 14 
W15 + IrE (e) .79 .11 <.10 14 
HL-A 9-W18 + IrE (f) .60 .09 >.10 5 
* Observed frequency of recombinants in offspring. 1 Probability under the null hypothesis 
of no linkage between HL-A and IrE. P < .05 and F < .5 indicate (lines a and b) that a particular 
HL-A haplotype is linked to the allele for ragweed sensitivity (IrE) (coupling); P < .05 and F> .5 
(line c) indicate that HL-A is linked to a different allele at the locus for IrE sensitivity (repulsion); 
and P > .05 indicates independent segregation (lines d, e, and f). 
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Genetic Mapping of Ir Locus in Man: 

Linkage to Second Locus of HL-A 

Abstract. Fifty-seven members of a family that spanned three generations were 
studied for antigen E and ragweed skin sensitivity and HL-A antigens. There was 
significant association between the haplotype HL-A 2-12 and antigen E skin 
hypersensitivity (F = .22 to .26) in this family. The map order is first locus of 
HL-A, second locus of HL-A, and IrE. These determinants are considered to be 
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tions from 10-2 to 10-10 (4 individu- 
als with end point reactions at 10-2 to 
10-4 mg/ml, 19 with end point reac- 
tions at 10-5 to 10-7 mg/ml, and 25 
with end point reactions at 10-8 to 
10-10 mg/ml). 

Determinations of the HL-A antigens 
were performed on lymphocytes ob- 
tained from the peripheral blood by 
a two-stage lymphocytotoxicity method 
(5). Assignment of haplotypes was 
based on inheritance patterns within 
the family (6). Red cell antigens were 
studied to exclude mixed paternity. 
Half siblings III-1 and III-2 (Fig. 1) 
were known to have different fathers. 
The fathers of III-1 and 111-33 were 
not available for study. Data on the B. 
family presented in Fig. 1 include 
clinical history of ragweed asthma or 
hay fever (or both), age, HL-A haplo- 
types, and skin reaction to ragweed 
and antigen E. Antigen E end point 
dilutions producing a positive skin test 
ranged from 10-3 to 10-9 mg/ml 
(Fig. 1). 

Apparent recombination frequency 
between HL-A and antigen sensitivity 

is presented in Table 1. Since HL-A is 
usually inherited as a single genetic 
unit, it is usual to designate HL-A in 
terms of haplotypes rather than as anti- 
genic specificities. However, the family 
includes an informative recombinant 
within the HL-A region. This individu- 
al, subject III-15, inherited specificity 
HL-A 9 from the maternal HL-A 9- 
W15 haplotype and HL-A 12 from the 
paternal haplotype HL-A 2-12. The 
association of HL-A to antigen E is 
therefore recorded in. relation to the 
determinants of each of the four HL-A 
specificities involved in the recombina- 
tion: HL-A 2, 9, and 12 and W15. 
Since the HL-A haplotypes HL-A 3- 
Wl 8 and HL-A 9-Wl 8 are not involved 
in recombination, they are treated as a 
unit. The only significant linkage be- 
tween ragweed hypersensitivity and 
HL-A is with haplotype HL-A 2-12. 
Subjects I-1 (age 73), 11-7 (age 46), 
II-11 (age 42), III-17 (age 14), III-21 
(age 20), and III-24 (age 9) gave nega- 
tive skin hypersensitivity reactions to 
ragweed or antigen E (or both) and 
have the haplotype HL-A 2-12. Thus 
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there is full penetrance of IrE in 11 of 
17 individuals (65 percent) carrying the 
HL-A antigen 12. Subjects II-1, 11-3, 
11-5, and II-11 are not included in the 
linkage analysis because the children 
of a negative parent are considered 
not to have inherited the determinant 
for hypersensitivity. 

There is a maximum of seven possi- 
ble HL-A IrE recombinants in this 
family. One of these, III-15, inherited 
an HL-A recombinant resulting from 
crossover between the HL-A 9 deter- 
minant from the paternal 9-W15 and 
the HL-A 12 determinant from the IrE 
linked HL-A 2-12 haplotype. The 
other six are HL-A IrE recombinants: 
subject II-11 inherited the 2-12 haplo- 
type but is negative for antigen E or 
ragweed skin hypersensitivity, and all 
her eight children including five with 
haplotype 2-12 are normal; III-36 re- 
ceived the IrE locus by crossover from 
the paternal HL-A 2-12 to the paternal 
HL-A 9-W15 haplotype. The remain- 
ing four are only possible recombi- 
nants: 111-17, III-21, and 111-24 are 
9, 14. and 20 years of age, respectively, 

8 2-12 

3G 2-12 t- w5 " 
9--r79 

\ 

, 
9-w1/5 

1\ 5-w5 

Qs I V-W5 

9-w/5 
2-x 

2-/2 
/-w5 

3-w/8 
2-7 

I-w/7 
9-w/5 

I 

P 2-12 
2-wl6 

3-w/8 
2-wf7 

29) 2-12 

2 -12 

'3-w 3-w 
3-w/O 

9-w/5 
1-8 ' 9-w/8 

3-wlO 

9-'?2 
2-w/8 

9-w15 2-/? w19-12 2-12 
2w7 

?2-w18 9-w/8 2-12 
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1302 

' 2-/2 
w/9 -/2 

the squares and circles identify the subjects. The 

SCIENCE, VOL. 184 



and have no Ir locus demonstrable by 
genetic transmission or skin testing. 
The fourth, II1-33, does not possess 
haplotype 2-12 but his 9-W15 haplo- 
type might have received the IrE from 
the maternal HL-A 2-12 haplotype. 
However, the lack of data on his father 
leaves the possibility of inheritance of 
IrE from the paternal haplotype. 

A second example of hypersensitivity 
to ragweed and antigen E was intro- 
duced by 11-4 and presents an ap- 
parent low penetrance form of hyper- 
sensitivity. Subject 11-4 had no evidence 
of hypersensitivity although her sister 
did. Of the five HL-A identical children 
of 11-3 and 11-4, only one had clinical 
and cutaneous hypersensitivity. There 
is no suggestion of linkage to HL-A 
in this segment of the family. 

Immediate reaginic immune response 
to ragweed pollen has a high familial 
incidence (7). Levine et al. have es- 
tablished a relation between hyper- 
sensitivity to antigen E or ragweed and 
the distribution of HL-A histocompati- 
bility antigens within a family (8). 
This suggested a genetic basis for the 
hypersensitivity and linkage between 
the genes for hypersensitivity and for 
HL-A. Buckley et al. have shown that 
the capacity to respond to a variety of 
biological products is also linked to the 
HL-A system (9). 

Our data are consistent with linkage 
between the locus for HL-A 12 and the 
IrE locus or loci controlling hyper- 
sensitivity to ragweed antigen E with a 
map distance of 7 to 22 crossover units, 
the best fit being realized when IrE is 
placed adjacent to the determinant for 
the second locus specificity HL-A 12. 
This assumption is based on the reac- 
tion of 111-15 who has clinical allergy 
and skin hypersensitivity to antigen E 
and ragweed. Since she inherited a re- 
combinant HL-A haplotype which in- 
cludes HL-A 12, it appears that the 

IrE gene was inherited with the second 
locus of HL-A. In addition, it is note- 
worthy that the MLR-S gene of III-15 
is inherited with the HL-A antigen 12 

(10). 
To establish whether or not the loci 

determining HL-A and ragweed sensi- 
tivity are in fact linked, we determined 
the maximum frequency of individuals 
who could be considered to be recom- 
binants. This frequency is 6/27 or .222 
[standard error (S.E.) =.08] with 
HL-A 12 and 7/27 or .259 (S.E. = 

.08) with HL-A 2. Therefore we can 

reject the hypothesis of independent 
segregation (P < .05) and consider 
these traits linked (Table 1). To estab- 
lish whether or not the locus for rag- 
weed sensitivity is inside the locus for 
HL-A, we estimated the minimum fre- 

quency of recombinants observed. 
Therefore, we eliminated III-17, III-21, 
and II1-24 because they are 14, 20, 
and 9 years of age and have no Ir locus 
that is demonstrable by genetic trans- 
mission. We might also eliminate III-33 
because no testing was done on his 
father or on his family. Considering 
these individuals as nonrecombinants, 
we obtain a minimal estimate of link- 

age of 2/27 or .07 (S.E. - .05) for 
HL-A 12 and 3/27 - .11 (S.E. = .06) 
for HL-A 2. Since the recombination 
frequency within the HL-A locus is 
estimated'to be at most .01 (11) (S.E. 
in a sample of 27- .02), one can re- 
ject the hypothesis that the locus de- 
termining ragweed hypersensitivity is 
between the two loci determining HL-A 
(P < .05). 

It is known from previous studies 
that the MLR-S gene also maps outside 
HL-A in association with the second 
locus determinant (1). Therefore the 
probable map order is either HL-A first 
locus, HL-A second locus, MLR-S and 
IrE or HL-A first locus, HL-A second 
locus, IrE, and MLR-S. Since the map 

distance between the first and second 
locus determinants for HL-A is some- 
what less than 1 crossover unit, IrE, the 
locus for production of a reaginic anti- 
body, must lie outside the HL-A com- 
plex proper. 
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