
some of these results relative to other 
comparable published work (2). We 
have demonstrated that amino acids can 
be produced from a hydrocarbon sub- 
strate with only one carbon atom, CH4, 
whereas Sagan and Khare (2) have 
stated that the two-carbon substrate 
C.H, is required for the production of 
amino acids. They have also suggested 
that the amino acids from such experi- 
ments are very likely not primarily 
made free but result from the hydroly- 
sis of nitriles or polypeptides (2). Our 
conditions never resulted in the forma- 
tion of observable amounts of polymer, 
nor were acid or basic hydrolysis con- 
ditions ever employed. Furthermore, we 
observed the production of amino acids 
in two experiments utilizing C2H5OH 
as one of the substrates and, consider- 
ing the nature of the experiments, it 
would appear that no nitrile-containing 
molecules could be generated. We de- 
tected no HCN or nitrile-containing 
molecule at the completion of any ex- 
periment either in the gas phase or in 
solution (water trap), using gas chromat- 
ographic-mass spectrometric analysis. 
In view of these facts, we believe that 
the major yield of amino acids is pro- 
duced not from the hydrolysis of a 
polymer but directly by a unique 
mechanism or mechanisms not hitherto 
considered. 

Note added in proof: An experiment 
similar to experiment VI was repeated 
and the products subjected to esterifica- 
tion and acylation to form N-trifluoro- 
acetyl isopropyl esters. Gas chroma- 
tography-mass spectrometry analysis 
positively identified the protein amino 
acids glycine, alanine, valine, leucine, 
aspartic acid, and glutamic acid plus 
some other nonprotein amino acids. 
This constitutes the first verification of 
protein amino acids from such reac- 
tions. 
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Studies by Komhyr et al. (1) of the 
temporal changes in the amounts of total 
ozone at a number of individual sta- 
tions have shown that there was an in- 
crease during the 1960's over many 
parts of the world. The average in- 
crease for ten North American stations 
was determined to be about 5 percent 
per decade. Calculations based on data 
from additional individual stations 
showing similar results have also re- 
cently been discussed in the literature 
(2). It is of considerable concern to 
determine whether or not these re- 
ported long-period ozone changes rep- 
resent a worldwide trend. 

Ozone is a minor constituent in the 
atmosphere, and its principal impor- 
tance derives from the fact that, even 
in relatively small amounts, it absorbs 
solar ultraviolet radiation that would 
otherwise penetrate down to the earth's 
surface and have disastrous effects on 
the biosphere (3). In addition, this ab- 
sorption of solar radiation is responsi- 
ble for the warm region at the top of 
the stratosphere (at about 50 km) and 
thereby helps to determine the thermal 
structure of that part of the atmo- 
sphere. Since ozone is a relatively inert 
gas below about 25 km, it represents 
a good tracer substance for atmo- 
spheric motions and has been a subject 
for considerable research by meteorolo- 
gists and aeronomers (4). Added in- 
terest in studies of atmospheric ozone 
stems from recent suggestions that ex- 
haust products from high-flying air- 
craft might somehow affect the strato- 
spheric ozone distribution and thus 
change the ultraviolet shielding prop- 
erty of the atmosphere, or inadvert- 
ently modify the earth's climate (5). 

We have been involved in a program 
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of analysis of all of the available total 
ozone data and have prepared mean 
monthly maps of the total ozone dis- 
tribution for each hemisphere covering 
the 13-year period from July 1957 to 
July 1970. From the individual 
monthly maps we have extracted grid 
point values (for each 10? of latitude 
and 20? of longitude) of total ozone. 
These values provide the basic data for 
the derived global ozone trends as de- 
scribed below. 

The average total ozone measured 
from the earth's surface (that is, the 
total amount of ozone in a vertical col- 
umn) is about 300 matm cm (6). 
Although some observations of total 
ozone were made as early as 1905, 
data sufficient to enable one to deter- 
mine its global distribution only be- 
came available at the start of the Inter- 
national Geophysical Year (July 1957). 
At that time routine observations of 
total ozone were being made at about 
50 stations. Since then an increasing 
number of stations have been involved 
in the international ozone-observing 
network, and, by 1970, total ozone 
data were at hand for at least part of 
the 13-year period from 150 stations, 
about 80 percent of them in the North- 
ern Hemisphere (7) (see Fig. 1). The 
distribution of these stations, both geo- 
graphically and with time, is somewhat 
uneven. For example, most of the sta- 
tions in each hemisphere are located in 
mid-latitudes. Also, there are no data 
from the large ocean areas except for 
the observations from a few island 
stations. 

The standard observing instrument 
used in the ozone network is the Dob- 
son spectrophotometer (8), although 
observers at a few stations, notably in 
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Global Trends in Total Atmospheric Ozone 

Abstract. Analyses of the mean mnonthly global distributions of total ozone for 
the 13-year period from 1957 through 1970 reveal an upward trend of about 7.5 
percent per decade in the NorthernI Hemisphere and about 2.5 percent per decade 
in the Southern Hemisphere. The increase seems to have started about March 
1961 in the Northern Hemisphere and about Septemnber 1961 in the Southern 
Hemisphere. The cause of these trends is at present unknown. 
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trends computed from the grid point 
data derived from the analyzed maps 
with the trends computed from all of 
the individual reporting stations suit- 
ably grouped and averaged over lati- 
tude. The results are essentially the 
same, although, as expected, the series 
based on the individual station data had 
larger short-period variations. 

It is obvious that there is a change 
in slope of the trend lines (sometime 
in 1961) associated with the curves in 
Fig. 2. This change is particularly evi- 
dent for the Northern Hemisphere 
curve. Each series was therefore di- 
vided into two subparts based on this 
apparent change, and separate regres- 
sion lines were calculated with the fol- 
lowing results and probable errors: for 
the Northern Hemisphere: August 
1957 through March 1961, -4.7 -+ 1.5 
percent per decade; April 1961 through 
May 1970, +11.3 ? 2.3 percent per 
decade; and for the Southern Hemi- 
sphere: August 1957 through Septem- 
ber 1961, +2.5 ? 2.3 percent per dec- 
ade; October 1961 through May 1970, 
-1.1 ? 1.6 percent per decade. 

It can be seen from these results that 
the upward trend in observed total 
ozone that occurred during the 1960's 
was primarily a Northern Hemisphere 
phenomenon and started in that hemi- 
sphere in the spring of 1961. Although 
these values might reflect, in part, sys- 
tematic drifts in the calibration of the 
various instruments, there is no a priori 
reason why the calibration errors 
should be more pronounced in the 
Northern than in the Southern Hemi- 
sphere. 

We have yet to establish whether 
these changes show a definitive world- 
wide pattern and to determine in what 
manner these trends are associated 
with changes in solar radiation, general 
stratospheric photochemistry, or fluc- 
tuation in the stratospheric circulation. 
The marked hemispheric difference in 
the trends, however, would seem to 
preclude any direct solar influence. 
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JEAN KELLEY 

Department of Astro-Geophysics, 
University of Colorado, Boulder 80302 
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We report here on our investigations 
of a common but unproved assump- 
tion, that natural concentrations of 
lead exist within plants and animals in 
open country; our conclusions are 
based on measurements of lead inputs 
and outputs for a natural ecosystem, 
on identification of the natural and in- 
dustrial leads within the ecosystem, and 
on measurements of the distribution 
of lead within a food chain within the 
ecosystem. Our studies were carried 
out in Thompson Canyon which is 
located in the crest of the High Sierra 
in California and which lies within a 
single batholithic rock type (Cathedral 
Peak quartz monzonite) that was 
stripped clean by Wisconsin glaciation. 
The soils of the canyon were formed 
during post-Wisconsin weathering of 
local quartz monzonite. The input of 
lead-containing aerosols less than 1 ,um 
in diameter collected by dry deposition 
on foliage, measured with a deposition 
instrument, was about 1 kg of lead en- 
tering the 14-km2 watershed during the 
four summer months. The input of 
lead-containing aerosols coprecipitated 
in snow within 14 km2 was estimated 
to be 12 kg of lead for the eight winter 
months. Rain contributes only 5 per- 
cent of the total water input and was 
not analyzed. About 97 percent of the 
aerosol lead entering Thompson Can- 
yon is, on the basis of Pb/(K + Ca) 
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ratios, of industrial origin. The value of 
this ratio is 2.0 in Los Angeles air, 0.02 
in Thompson Canyon snow, 0.01 in 
Thompson Canyon foliar dust, and 
0.0005 in Thompson Canyon rocks. 
Mass balance estimates of the output of 
industrial lead aerosols from both the 
Los Angeles and San Francisco areas 
[based on the 5 metric ton/day emission 
from Los Angeles estimated by Hunt- 
zicker and Friedlander (1) and a 2 
ton/day emission from San Francisco 
obtained by normalizing to the Los 
Angeles value on the basis of popula- 
tion ratios] suggest that the share of this 
emission available for deposition within 
Thompson Canyon from a uniform dis- 
persal area 2000 km in diameter should 
be about 10 kg of lead per year, which 
is within the limits of the observed input 
of 13 kg of lead per year. We deter- 
mined the output of lead from the 
canyon by streams by analyzing the 
lead content of stream waters and using 
water output data to obtain the total 
average yearly lead output, 0.2 kg of 
lead per year from 14 km2. Stream 
runoffs and snow accumulations were 
monitored throughout the year by 
Hinkley (2). 

The difference between lead input 
and lead output shows that, at present, 
about 98 percent of the industrial lead 
entering the valley as aerosols remains 
there. We believe that the strongly 
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Lead Aerosol Pollution in the High Sierra Overrides 
Natural Mechanisms Which Exclude Lead from a Food Chain 

Abstract. Most of the lead contained in sedge and voles (mountain meadow 
mice) within one of the most pristine, remote valleys in the United States is not 
natural but came from smelter fumes and gasoline exhausts. In a food chain, 
natural mechanismzs do not allow lead to accompany the bulk of the nutritive 
metals as they proceed to higher trophic levels. This exclusion can be expressed 
quantitatively by a comparison of lead/calcium ratios at successive trophic levels. 
This ratio decreased by an overall factor of 200 in proceeding from rock, to soil 
moisture, to sedge, to vole. This factor would have been 1200 if lead aerosols 
had not collected on sedge leaves and circumvented the tendency by sedge to 
exclude lead from the nutritive metals it absorbed from soil moisture. 
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