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Although the U.S.-Canada Water 
Quality Agreement (1) was signed on 
15 April 1972, legislation prohibiting 
the use of phosphorus in detergents 
and controlling inputs of phosphorus 
to the St. Lawrence Great Lakes has 
not been passed by many states (2). 
Much of the foot-dragging on anti- 
eutrophication laws undoubtedly still 
results from the controversy and con- 
fusion surrounding the debate over the 
effectiveness of controlling phosphorus 
in influents to freshwater lakes (3). 
Among the main points debated (often 
on the basis of inconclusive evidence) 
have been: 

1) Is phosphorus really responsible 
for eutrophication problems? 

2) If sufficient phosphorus is avail- 
able, can carbon limit the growth of 
undesirable algae? 

3) Is phosphorus removal alone an 
effective means of overcoming eutrophi- 
cation problems? 

4) Are already culturally eutrophied 
lakes recoverable? Can this be done by 
controlling inputs of phosphorus alone? 

5) What concentration of phosphorus 
can be considered safe? 

Answers to these questions have been 
sought in a series of whole-lake experi- 
ments conducted in the Experimental 
Lakes Area of northwestern Ontario. 
Lakes in the area are set in Precam- 
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brian Shield bedrock. Chemically and 
biologically they are similar to more 
than 50 percent of the waters draining 
to the St. Lawrence Great Lakes (4). 

In an early experiment, phosphate 
and nitrate were added to lake 227, 
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Fig. 1. Lake 226, demonstrating the vital 
role of phosphorus in eutrophication. The 
far basin, fertilized with phosphorus, ni- 
trogen, and carbon, was covered by an 
algal bloom within 2 months. No increases 
in algae or species changes were observed 
in the near basin, which received similar 
quantities of nitrogen and carbon but no 
phosphorus. 

Fig. 1. Lake 226, demonstrating the vital 
role of phosphorus in eutrophication. The 
far basin, fertilized with phosphorus, ni- 
trogen, and carbon, was covered by an 
algal bloom within 2 months. No increases 
in algae or species changes were observed 
in the near basin, which received similar 
quantities of nitrogen and carbon but no 
phosphorus. 

which has an extremely low content of 
dissolved inorganic carbon, to see 
whether shortage of carbon would pre- 
vent the eutrophication of such a lake 
(5). The lake was transformed into a 
teeming, green soup within weeks after 
nutrient additions were begun. Algal 
standing crops up to two orders of 
magnitude greater than those in un- 
fertilized lakes of the area have been 
observed (6, 7). No increase in phos- 
phate concentration was observed, and 
any added phosphate disappeared in 
minutes because of uptake by plankton 
(8). Gas-exchange studies revealed that 
some of the additional carbon required 
for production of this algal bloom was 
drawn from the atmosphere, and a 
comparison of dissolved inorganic car- 
bon concentrations and parameters af- 
fecting gas exchange indicated that 
there was no possibility that shortage 
of carbon could prevent the eutrophica- 
tion of the St. Lawrence Great Lakes 
or any other water body of economic 
importance (9). 

Experiments conduLcted in smaller 
enclosures (2 to 3 m:;) in the same 
lake revealed that if phosphorus was 
not supplied, algal blooms did not oc- 
cur (10). In order to test the validity 
of this conclusion on a whole lake, an 
experiment was begun in 1973 in an- 
other small lake, 226. This lake, which 
has two similar basins separated by a 
shallow neck (see Fig. 1), was divided 
into two equal areas by using a sea 
cutrtain (60 by 6 m) of vinyl reinforced 
with nylon (Kepner Plastics, Torrance, 
California), which was sealed into the 
sediments and fastened to the bedrock 
in the narrow section of the lake. Be- 
ginning in late May 1973, additions of 
nitrogen and carbon were made equally 
to both basins, but phosphorus was 
added only to the northeast basin of 
the lake (1/). 

The photograph in Fig. 1 was taken 
on 4 September 1973, when a bloom 
of the blue-green alga Anabaena spi- 
roides covered that basin receiving 
phosphorus. Throughout the year, phy- 
toplankton species and standing crops 
in the basin that received only nitrogen 
and carbon remained similar to those 
before fertilization was begun, con- 
sisting chiefly of Tabellaria fenestrata, 
Synedra acus, and other diatoms. The 
results indicate the efficacy to be ex- 
pected from controlling phosphorus 
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content of the influents to such waters 
as a means of preventing eutrophica- 
tion. 

A common belief is that phosphate, 
returned from anoxic sediments in 
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Eutrophication and Recovery in Experimental Lakes: 

Implications for Lake Management 

Abstract. Combinations of phosphorus, nitrogen, and carbon were added to 
several small lakes in northwestern Ontario, Canada, at rates similar to those 
in many culturally eutrophied lakes. Phosphate and nitrate caused rapid eutrophi- 
cation. A similar result was obtained with phosphate, ammonia, and sucrose, but 
recovery was almost immediate when phosphate additions only were discontinued. 
When two basins of one lake were fertilized with equal amounts of nitrate and 
sucrose, and phosphorus was also added to one of the basins, the phosphate- 
enriched basin quickly becamie highly eutrophic, while the basin receiving only 
nitrogen and carbon remained at prefertilization conditions. These results, and 
the high affinity of sediments for phosphorus indicate that rapid abatement of 
eutrophication may be expected to follow phosphorus control measures. 
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eutrophied lakes, would cause such 
lakes to retain their eutrophic charac- 
ter even if external sources of phos- 
phorus were eliminated (12). Our re- 
sults in 1 year from the fertilization of 
lake 227 showed that little or no phos- 
phorus was returned from the sedi- 
ments of that lake, even with anoxic 
periods of several months (13). Other 
studies have suggested that phosphorus 
return from sediments would not seri- 
ously delay the recovery of a lake from 
cultural eutrophication once major 
phosphorus sources were eradicated 
(14). A whole-lake experiment was 
therefore designed to test the speed 
of lake recovery and the efficiency of 
the sediments at removing and retain- 
ing phosphorus. 

The phytoplankton and chemistry of 
lake 304 in its natural state were 
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studied in 1969 and 1970 (4). In 1971 
and 1972, phosphorus, nitrogen, and 
carbon were added to the lake (15). 
As in lakes 227 and. 226, an algal 
bloom occurred in response to this 
application of fertilizer. In 1973, we 
continued to add nitrogen and carbon, 
but discontinued phosphorus additions, 
simulating conditions that might exist 
in a culturally eutrophied lake after 
phosphorus control measures were 
taken. The recovery of the lake was 
nearly complete, as the chlorophyll a 
concentrations indicate (Fig. 2). These 
results can be explained by our experi- 
ments in lake 227, which have shown 
that phosphate in the hypolimnion is 
taken up rapidly by microplankton 
(probably bacteria), then sedimented to 
the lake bottom, where it remains, re- 
gardless of oxygen concentration (16). 

Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

Fig. 2. Chlorophyll a concentrations in lake 304. In 1968, 1969, and 1970 the lake 
was not fertilized. In 1971 and 1972, it received annual additions of 0.40 g of phos- 
phorus, 5.2 g of nitrogen, and 5.5 g of carbon per square meter. In 1973, additions 
of nitrogen and carbon were continued at the same rate but phosphorus was not added. 
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Taken together, these results provide 
answers to the questions listed above. 
They suggest that cultural eutrophica- 
tion problems might be solved simply 
and swiftly. In most lakes, reducing 
the phosphorus input could be expected 
to cause a proportional abatement in 
phytoplankton blooms and other symp- 
toms of eutrophication (17). Fully 50 
percent of the phosphorus coming into 
the St. Lawrence Great Lakes could 
be eliminated by simply banning or 
greatly reducing detergent phosphates, 
a step already taken in Canada and a 
few U.S. states (2). Most of the U.S. 
states, however, plan to remove phos- 
phorus at the sewage treatment plant 
(18). While fine in principle, this 
scheme will take several years to imple- 
ment to any effective degree, consider- 
ing the time lags and uncertainty in- 
evitable in financing, planning, and 
constructing such facilities. Numerous 
small sources, such as small communi- 
ties and individual homes on septic 
systems, will escape phosphorus re- 
moval for some time longer. It appears 
that a basin-wide ban on detergent 
phosphates would quickly bring about 
a partial recovery of Lakes Erie and 
Ontario, perhaps as much as a decade 
before full-scale phosphorus control by 
other means is possible. Such a re- 
covery would provide a savings of 
many millions of dollars, as well as 
restoring to some degree the beauty of 
these enormous resources. 

D. W. SCHINDLER 
Fisheries and Marine Service, 
Freshwater Institute, 
Winnipeg, Manitoba, Canada R3T 2N6 
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Opaline Sediments of the Southeastern Coastal Plain 

and Horizon A: Biogenic Origin 

Abstract. Scanning electron microscope techniques show that Eocene opaline 
claystones (fuller's earth and buhrstone) of the Atlantic and Gulf Coastal Plain, 
deposits long considered volcanic in origin, are actually highly altered diatomites 
formed as transgressive facies in normal marine continental shelf environments. 
These findings are in agreement with a biogenic origin for time-equivalent 
horizon A and A" deep-sea cherts of the North Atlantic and Caribbean. 
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ble with a biogenic rather than a vol- 
canic origin for the horizon A cherts 
and their Caribbean equivalents (hori- 
zon A"). 

Opaline claystones are unusually 
porous, lightweight siliceous rocks 
which possess oil clarification proper- 
ties (4). Accordingly, they have been 
referred to locally as fuller's earth (5) 

Opaline (cristobalite-rich) Eocene 

claystone deposits of the Atlantic and 
Gulf Coastal Plain have recently been 
cited in Science (1) and elsewhere (2) 
as examples of altered rhyolitic ashes 
which accumulated in nearshore or 
brackish coastal environments. Such 
ashes are also thought to have been 
distributed by atmospheric and water 
currents into the North Atlantic Ocean 
basin where they were presumably re- 

sponsible for the formation of the 
cristobalite-rich, horizon A Eocene 
cherts (1, 3). We present evidence here 
to show that opaline claystones of the 
coastal plain are altered diatomites, not 
ashes, and that they formed in normal 
marine rather than in restricted coastal 
environments. Our evidence is compati- 
ble with a biogenic rather than a vol- 
canic origin for the horizon A cherts 
and their Caribbean equivalents (hori- 
zon A"). 

Opaline claystones are unusually 
porous, lightweight siliceous rocks 
which possess oil clarification proper- 
ties (4). Accordingly, they have been 
referred to locally as fuller's earth (5) 

or buhrstone (6). Scanning electron 

microscopy of fracture surfaces of 

opaline claystones from 14 Southeast- 
ern Coastal Plain localities (Mississippi 
to South Carolina; see Table 1) reveals 
siliceous microfossils which occur as 
molds in 90 percent of the samples 
examined. The fossils are most abun- 
dant in samples which contain 60 to 
90 percent SiO.,. The opaline material 
is unidimensionally disordered alpha- 
cristobalite (7) in the form of bladed 

microspherulites (8). Most of the 
microfossil molds are of marine di- 
atoms including large and small cen- 
trics (Fig. 1A), pennates and forms 
which resemble Triceratium (Fig. 1B), 
and Actinoptychus (Fig. 1C). Sponge 
spicule (Fig. D) and radiolarian 
molds (9) are interspersed in the South 
Carolina and Alabama material. 
Clearly, the opaline claystones repre- 
sent highly altered diatomite deposits 
rather than ash beds. Most microfos- 
sils in the deposits, however, have been 
completely destroyed by dissolution. 

Siliceous microfossils have not been 
reported previously in South Carolina 
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Table 1. Opaline claystone samples which contain siliceous microfossil molds. The Black 
Mingo and McBean units were collected by S. D. Heron. All other samples were collected 
by the authors. 

Formation Samples and localities Age 

Nanafalia 
(Grampian Hills member) GH-l (Wilcox County, Ala.) Late Paleocene 

Black Mingo 9-6-1 (Sandy Run Creek, S.C.); Early-Middle 
(opaline facies) 9-9-1 (Big Beaver Creek, S.C.); Eocene 

6-10-4, 9-11-4 (Little Beaver 
Creek, S.C.); 9-18-1, 9-18-2 
(Bates Mill Creek, S.C.); 9-67-1, 
9-67-2, 9-67-3 (Thelma Hill 
property, Calhoun County, S.C.); 
9-68-2 (Dicks Swamp, S.C.); 
A-183-1 (Williamsburg Bridge, 
S.C.); 43-6-1, (Tavern Creek, 
S.C.); 43-7-5 (Holy Cross 
Church, Sumter County, S.C.) 

McBean A-3-1, A-3-2 (Early Branch, S.C.) Middle Eocene 
Tallahatta 

T-3 [Choctaw County, Ala.; 
locality 135 of Toulmin and 
LaMoreaux (17)]; 1-10-12, 
1-10-13, 33-1 (U.S. Highway 
1-10, Meridian, Miss.) 

Barnwell KL-1 (Georgia-Tennessee Clay Late Eocene 
(Twiggs Clay member) Corporation pit, Wrens, Ga.) 
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