
vidual homes (7), researchers are 
studying, among other materials, or- 
ganic materials, such as paraffin waxes, 
for storage where a long cycle life is re- 
quired. For Ithe higher temperatures 
needed in solar energy central power 
generating plants, several laboratories 
are studying eutectic salts, such as 
sodium nitrate-sodium chloride. 

A number of other storage options 
are also emerging, and observers say 
there will likely be several more. For 
example, steam generated in central 
power plant boilers might be stored in 
tanks or caverns until it is needed to 
run turbines. Coal gasifiers, when op- 
erational, are expected to be most effi- 
cient when operated continuously. The 
gas produced might similarly be stored 
at high pressure in caverns. A rate 
structure for energy that reflected the 
cost of energy (base load electricity is 
cheaper to make than peak electricity) 
might reshuffle consumption patterns so 
that the demand for energy was more 
uniform. Or a new storage scheme may 
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enter the scene with the potential of 
becoming dominant in its field. For ex- 
ample, recently, J. A. Van Vechten of 
the Bell Laboratories, Murray Hill, 
New Jersey, described a thermal storage 
scheme where molten semiconductors 
were used as a heat-of-fusion storage 
material (8). Van Vechten suggested 
that substantial improvements in stor- 
age efficiencies (because of larger heats- 
of-fusion and better heat transfer) and 
lower costs could result from the use 
of semiconductors. 

Despite the importance of energy 
storage, the activity as indicated by 
funding can only be described as mod- 
est. The largest advanced storage re- 
search program in the federal govern- 
ment belongs to the Atomic Energy 
Commission, which is spending about 
$1.8 million this year, the largest part 
going toward batteries. Overall, prob- 
ably less than $10 million is being 
spent throughout the United States on 
advanced energy storage (that is, ex- 
cluding pumped hydroelectric and 
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commercial batteries). A possible con- 
sequence is that some time will pass 
before any of the advanced energy 
storage systems become available. 

-ARTHUR L. ROBINSON 
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The Finite Element Method: A Mathematical Revival The Finite Element Method: A Mathematical Revival 

The ideas that underlie a means to 
approximate solutions to differential 
equations, the finite element method, 
were first proposed by a mathematician, 
the late R. Courant of New York Uni- 
versity, in 1943, but received little at- 
tention at that time. Even when other 
mathematicians again proposed similar 
ideas in 1953, mathematicians did not 
develop this method of approximation. 
Instead, the finite element method was 
developed by engineers who found 
other approximation schemes inade- 
quate to enable them to solve problems 
in structural mechanics and elasticity. 
The method proved highly successful 
when applied to these engineering prob- 
lems. As it came into extensive use, its 
defects as well as its advantages be- 
came clear and further analysis of the 
ideas on which it is based became 
necessary. Now, however, mathemati- 
cians are studying these ideas again and, 
together with engineers, are applying 
the finite element method to some ex- 
tremely difficult practical problems. 

A differential equation can be solved 
numerically by techniques, such as 
finite difference methods, ,that are based 
on approximations to the derivatives of 
a function. Alternatively, it can be 
solved by techniques based on approxi- 
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mations to 'the function that satisfies 
the differential equation. The finite ele- 
ment method is a technique that allows 
for an approximation to such a func- 
tion. 

When applying the finite element 
method to the solution of a differential 
equation, analysts consider a variational 
form of the equation. A variational 
form is an expression that can be de- 
rived from certain differential equations. 
It consists of a sum of integrals. A 
function that minimizes a variational 
form is also a function that satisfies the 
associated differential equation. By en- 
abling investigators ito approximate a 
function that will minimize a varia- 
tional form of a differential equation, 
the finite element method allows for an 
approximation to a solution to that 
equation. 

An approximation to a function that 
minimizes a variational form is con- 
structed from combinations of certain 
trial functions. These trial functions are 
defined on the region in which a solu- 
tion to the differential equation is 
sought. The region is divided into a 
grid, and the divisions of the region 
are called elements. In a two-dimen- 
sional problem (such as the problem of 
describing the forces on a vibrating 
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membrane) the elements are usually 
triangles or rectangles. 

Each trial function is zero on all 
parts of the region except for one 
element. The various trial functions- 
which are simple linear functions, poly- 
nomials of low degree, or the like-are 
joined together at the boundaries of the 
grid elements. Values of the trial func- 
tions are defined at certain points 
(nodes) of the elements, and for a 
given trial function, sufficiently many 
nodal values are stipulated so that only 
one function could satisfy all of those 
values. 

In order to use a combination of 
these trial functions to approximate 
the solution to an equation, analysts 
must find the combination that will 
minimize a variational form of an equa- 
tion. They thus formulate a sum of 
trial functions to be substituted into a 
variational form, each term of the sum 
consisting of a itrial function multiplied 
by a constant. The constants are unde- 
termined when the sum is formulated. 
The goal is to select a specific combina- 
tion of constants Ithat will result in a 
minimization of a variational form 
when the sum is substituted into that 
expression. Such a collection of con- 
stants can be determined when a matrix 
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equation is solved on a computer. The 
entries of the matrix correspond to the 
trial functions. The unknowns in the 

equation are the constants. 
The approximate solution can be im- 

proved when the distance between nodes 
is decreased (that is, the grid is made 

finer) and a new collection of constants 
and thus a new approximate solution 
is calculated. In this way, a sequence 
of increasingly accurate approximations 
that converge to the exact solution can 
be obtained. 

Matrix Equations 

Since the entries of a finite element 
matrix are derived from the trial func- 

tions, the properties of the matrix re- 
flect the structure of the trial functions. 
For example, since each trial function 
is zero over most of its domain, the 
matrices contain many zeros. These 
matrices are so constructed that ;their 

equations are numerically stable, a prop- 
erty essential to reliable computer cal- 
culations. (Small changes in the prob- 
lem result in only small changes in the 

solution.) Numerical stability is essen- 
tial to reliable computer calculations. 
For example, computer round-off errors 
result in inevitable changes in the ma- 
trix problem, and it is necessary that 
such changes do not result in a dis- 
torted solution. 

Despite the fact that finite element 
matrices are fairly simple, the matrices 
are often large and the size of the 
matrix increases as the distance between 
nodes is decreased (hence the ap- 
proximation to the solution is im- 

proved). The computer operations nec- 

essary to solve most problems can be 
difficult and time-consuming. Thus a 
means to reduce the number of arith- 
metic operations needed to solve finite 
element matrix equations is of consider- 
able importance. 

A. George of the University of 
Waterloo in Canada recently showed 
that it is possible to use the properties 
of matrices that arise from the finite 
element method to reduce by an order 
of magnitude the number of arithmetic 

operations necessary to solve the matrix 

equations. George used a graphical 
model of a finite element matrix to 

develop a scheme for reordering the 
variables in the equation. He showed 
that the matrix equation in which the 
variables were reordered could be solved 
with fewer operations than could the 

original equation and that the amount 
of computer storage space used in 
the solution to these equations can, 
in theory, be reduced. Working with 
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M. Schultz and S. Eisenstat of Yale 

University and F. Dorr of Los Alamos 
National Laboratory, George has now 
devised a computer storage scheme that 
allows him to solve finite element 
matrix equations with the calculated 
minimum amounts of computer opera- 
tions and storage space. Thus his re- 
sult is of practical as well as theo- 
retical importance. 

According to G. Fix of the Univer- 

sity of Michigan, problems of efficient 
data management are often more im- 

portant to finite element computations 
than are problems of reducing the 
number of arithmetic operations. In 
finite element computer schemes, it is 
often the case that only a small amount 
of the computer time is used for nu- 
merical operations, the remainder being 
used for data management. This situa- 
tion arises because the two major finite 
element computer operations-the con- 
struction of trial functions and the 
elimination of unknowns in the matrix 

equation-are normally performed sep- 
arately in finite element computer codes. 
Thus a method, developed by B. Irons 
of the University of Wales, in which 
these two operations are performed 
concurrently, is a significant contribu- 
tion to this problem of reducing the 
amount of computer time expended in 
data management. Irons' method, which 
is commonly called the frontal method, 
was proposed only a few years ago but 
has already been put to extensive use. 

Problems Are Altered 

Despite the results of George and 
Irons, the process of solving finite ele- 
ment equations can be long and com- 

plicated. In addition, the incorporation 
of certain aspects of problems into the 
construction of trial functions may 
greatly increase the computational dif- 

ficulty of the problems. In some cases, 
investigators have found that they could 
so alter a difficult problem as to make 
it easier to solve, and could obtain a 
solution to the altered problem that 

converges to the solution to the original 
problem. 

One situation in which problems can 
be altered and their solutions facilitated 
occurs when certain problems are de- 
fined on irregularly shaped regions. The 

computational cost of extending trial 
functions to such a region is great. In- 
vestigators may then choose to ignore 
the irregular boundary and assume that 
the irregular region is a polygon. This 
change in the problem will result in a 

change in the approximate solution. 
The approximate solution to the altered 

problem will often converge more slow- 
ly to the true solution to the original 
problem. However, in many cases, the 
penalty associated with the alteration 
of the problem costs less in computer 
time and computational complexity 
than does the extension of the problem 
to the irregular boundary. 

Computational problems that arise 
when the trial functions are extended 
to certain boundaries can also be cir- 
cumvented by a method studied by I. 
Babuska of the University of Maryland. 
Babuska analyzed a variational form 
of a problem in which the solution is 

required to take on specific values at 
the boundaries of a region. The incor- 

poration of these boundary values into 
the approximate solution to the prob- 
lem is often technically complicated. 
Babuska avoided this problem by con- 

sidering the sum of the original varia- 
tional form of the problem and a 
weighted contribution of the boundary 
regions to the solution. He then mini- 
mized this sum by taking combinations 
of trial functions that have no bound- 
ary restrictions. 

Babuska's method allows for an ap- 
proximation that converges to the solu- 
tion to the problem. The penalty 
associated with this technique is that 

convergence to the solution may be 
slower if the method is applied than if 
it is not applied. Babuska postulated, 
however, that it is theoretically possible 
to use his technique and have an arbi- 

trarily small convergence penalty. 
T. King of the University of Cin- 

cinnati has recently shown that an 

optimum convergence rate (no con- 
vergence penalty) can be achieved in 

approximations to the solutions of a 
class of boundary value problems. He 
used Babuska's method and computed 
the approximate solution to a given 
problem several times, using different 
weights for the boundary contribution 
in each calculation. By taking a linear 
combination of the solutions that result 
from these different boundary weights, 
he obtained a solution that converges 
at the theoretical maximum rate. 

Another way to simplify problems 
involves the use of nonconforming trial 
functions. These do not obey certain 

physical restrictions on the problem, 
and, in many cases, are not continuous 
across the grid into which the region 
is divided. When such trial functions 
are defined, the variational form of the 
problem (which often represents an en- 
ergy that is to be minimized) takes on 
infinite values at the boundaries of the 
grid. That the variational form must 

SCIENCE, VOL. 184 



remain finite is a physical restriction on 
the problem. In order to obey this 
restriction when nonconforming trial 
functions are used, analysts calculate 
the approximate solution on each grid 
element separately. They then add up 
all of these approximations and ignore 
the grid boundaries. 

Engineers discovered experimentally 
that certain changes in problems can 
result in only very small errors in the 
solutions. Only recently, however, have 
mathematicians analyzed how and when 
these problems may be changed. In cer- 
tain cases, engineers have devised tests 
that allow them to determine whether 
a given problem can be altered. The 
first successful test, the patch test, was 
proposed by Irons in 1965. 

Irons was studying problems in plate 
bending at the Rolls-Royce Company 
when he devised his test. He conjec- 
tured that the use of nonconforming 
trial functions is justified if his test 
criterion is satisfied. The test consists 
of an examination of a special case of 
convergence of the nonconforming trial 
functions. A small patch of grid ele- 
ments is arbitrarily chosen, and the 
boundary conditions of the problem are 
arranged so that the true solution to the 
problem in that region is a polynomial. 
If the solution obtained by noncon- 
forming trial functions defined on the 
elements of the patch is that poly- 
nomial, then the patch test is passed. 
The patch test was experimentally suc- 
cessful, but only recently (in 1972) 
was it mathematically justified by G. 
Strang of the Massachusetts Institute of 
Technology. 

Alterations in problems such as those 
tested by Irons allow investigators to 
circumvent restrictions of the finite ele- 
ment method. Thus the analyses of 
these techniques are of considerable 
interest to engineers and mathemati- 
cians. Strang, Babuska, and Fix are 
among those mathematicians who are 
studying changes in problems to deter- 
mine when they are and are not justified. 

Superconvergence 
Not all mathematically interesting 

aspects of the finite element method 
are of immediate practical importance. 
The phenomenon of superconvergence 
is of considerable interest tol mathe- 
maticians but has not yet yielded re- 
sults that have been applied to engineer- 
ing problems. Superconvergence occurs 
when an approximate solution to a 
problem is much closer to the actual 
solution at some node points than 
would ordinarily be expected. 
24 MAY 1974 

A recent description of supercon- 
vergence involves the finite element 
approximation to the heat equation, an 
equation that describes the conduction 
of heat through an object as a function 
of time. J. Douglas and T. Dupont of 
the University of Chicago report that 
superconvergence occurs at node points 
when all of the finite element trial 
functions are polynomials of at least 
the second degree and the trial func- 
tions are pieced together so that they 
are continuous but not necessarily dif- 
ferentiable across the grid boundaries. 
Douglas and Dupont have expressed 
this convergence in terms of the poly- 
nomials used in the approximation. 
Superconvergence is more pronounced 
as the degree of the polynomials in- 
creases. Superconvergence of the heat 
equation has not yet been applied to 
engineering problems, but Dupont be- 
lieves that practical applications of such 
results cannot be ruled out. 

According to Douglas, there is an- 
other type of mathematical research 
of superconvergence that is likely to 
be of practical importance. Such re- 
search, which is done by J. Bramble 
and A. Schatz of Cornell University, 
involves auxiliary calculations with the 
approximate solution obtained by the 
finite element method. Such calculations 
may be useful to engineers when they 
are less interested in an approximate 
solution than in, quantities calculated 
from it. For example, in certain prob- 
lems studied by Douglas and Dupont 
together with M. Wheeler of Rice Uni- 
versity in Houston, flow rates are ob- 
tained from the first derivatives of the 
approximate solutions. 

The type of superconvergence studied 
by Bramble and Schatz is a supercon- 
vergence in regions rather than points 
of the approximate solution. Their re- 
sult follows when they take local aver- 
ages of the approximate solution about 
arbitrary points. This technique may 
facilitate the application of supercon- 
vergence to studies of properties such 
as flow rates that are calculated from 
the approximate solution in a region 
of the domain. 

The recent interest among mathema- 
ticians in the finite element method has 
coincided with successful applications 
of the technique to some extremely 
difficult practical problems. In the past 
decade the method was more often 
applied to problems in solid mechanics 
since variational forms of such prob- 
lems are easily obtained. Variational 
forms of problems in fluid mechanics 
are more difficult to construct. Thus 

problems in fluid mechanics have only 
recently been approached by the finite 
element method. 

Many problems that arise in studies 
of blood circulation can be described 
by equations of fluid mechanics. P. 
Tong of the Massachusetts Institute of 
Technology together with Y. Fung of 
the University of California at San 
Diego have applied the finite element 
method to equations that describe the 
flow of viscous fluids. Their results, 
they say, can be used to develop a 
numerical method of analysis of prob- 
lems of describing blood circulation. 

The finite element method is also 
being used to study the dynamics of 
ocean circulation. Fix is developing 
models that describe the time-depen- 
dent and highly nonlinear meandering 
of the Gulf Stream. This process is 
believed to be important to the global 
pattern of ocean circulation. Another 
phenomenon that Fix hopes to model 
with the finite element method is the 
so-called midocean meso-scaled eddies. 
These eddies, whose flow is also time 
dependent and highly nonlinear, trans- 
port a significant amount of energy. 

Another difficult problem in fluid 
mechanics is that of finding approxi- 
mate solutions to neutron diffusion and 
transport equations. Solutions to these 
equations are important to the design 
of nuclear reactor cores. Hans Kaper 
and his colleagues at Argonne National 
Laboratories are now applying the finite 
element method to these equations. 
According to Kaper, the finite element 
method may lead to a general solution 
method for these equations since it 
already has been used to solve particu- 
lar classes of such problems. 

Recent applications of the finite 
element method to increasingly com- 
plex and varied problems are possible 
because communications between engi- 
neers and mathematicians have in- 
creased. Both engineers and mathemati- 
cians are enthusiastic about the upsurge 
of interest in the finite element method 
since they believe that current mathe- 
matical research will provide a theo- 
retical basis for the future development 
of this highly successful approximation 
technique.-GINA BARI KOLATA 
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