Reports

Jupiter's Ionosphere: Prospects for Pioneer 10

Abstract. Model Jovian ionospheres are constructed for comparison with Pioneer 10 results. Electron density maxima are predicted at a level approximately 220 kilometers above an assumed reference height where the hydrogen density is 10¹⁶ molecules per cubic centimeter. It may be possible to use observations of the electron density to locate the turbopause. Attention is drawn to a possible strong source of ionized sodium from Io which might lead to large electron densities at low altitudes.

Pioneer 10 is scheduled to fly by Jupiter on 3 December 1973 and provide our first closeup view of the giant planet. The mission has multiple objectives, among them to define conditions in Jupiter's upper atmosphere and ionosphere. This report is intended to set the scene for receipt and interpretation of the spacecraft data. We develop a model for Jupiter's ionosphere, including all known relevant chemical reactions. We explore the dependence of the model on various uncertain parameters, offering a yardstick against which one may judge the significance of the new data.

Jupiter's atmosphere consists mainly of H_2 and He, with trace quantities of CH₄ and NH₃. The mixing ratio of He is $0.26^{+0.16}_{-0.21}$ according to a recent analysis of data obtained during the occultation of Beta Scorpii by Jupiter (1). The mixing ratio for CH_4 is 7 \times 10^{-4} , and the abundance of NH₃ is too small for this gas to play any role in the present study (2). The upper atmosphere is expected to contain important quantities of H formed by dissociation of H_2 and CH_4 , and the composition of the upper atmosphere is affected by the strength of turbulent mixing assumed to occur at lower levels.

Authors of Reports published in *Science* find that their results receive good attention from an interdisciplinary audience. Most contributors send us excellent papers that meet high scientific standards. We seek to publish papers on a wide range of subjects, but financial limitations restrict the number of Reports published to about 15 per week. Certain fields are overrepresented. In order to achieve better balance of content, the acceptance rate of items dealing with physical science will be greater than average.

Strobel (3) derived a value of $2 \times$ 10^4 cm² sec⁻¹ for the eddy diffusion coefficient in the lower stratosphere from a consideration of the ultraviolet albedo of Jupiter. Wallace and Hunten (4) placed an upper limit of 10^6 cm² sec^{-1} on the eddy diffusion coefficient at the turbopause from an interpretation of the Lyman-alpha albedo measured by Moos and Rottman (5). Interpretation of the Lyman-alpha data may be confused, however, by a possible contribution to the observed flux due to scattering in a toroid of gas near Io's orbit (6). We regard the eddy coefficient as still undetermined, and accordingly consider it as a parameter to be varied in this analysis and, we hope, to be determined by the Pioneer data.

The sources of ionization associated with absorption of sunlight are reviewed by McElroy (2), and his analysis is followed here. We emphasize particularly the role of dissociative photoionization of H_2 , which offers an important source of H^+ ignored in previous models.

The chemical model is summarized in Table 1; several reactions merit special comment. Protons are removed by the three-body reaction e6 over an extensive height range (7). Helium ions are most probably lost by a combination of e3 to e5, although the associated rate constants have not been measured. The ion HeH+ can be removed by either e7 or r3, with e7 dominant at all heights of interest here. Reactions e6 and e7 were omitted in most previous models for Jupiter's ionosphere, which resulted in major overestimates for the concentrations of H+ and HeH+. Reactions e6 and e7 provide important sources of H_3^+ . The rate constant for r1 is larger, by a factor of 40, than values used earlier

(8). The electron density at lower altitudes is reduced accordingly.

A model ionosphere is shown in Fig. 1. We adopted an eddy diffusion coefficient of 10^5 cm² sec⁻¹ and assumed a mixing ratio of 0.24 for He in the lower atmosphere. The height scale was arbitrarily normalized to a zero reference value at a level where the atmospheric density was 10^{16} molecules per cubic centimeter. The turbopause for He is at 60 km. Densities of H were obtained by numerical solution of the appropriate diffusion and continuity equations (2).

The dominant ion above about 180 km is H⁺. At lower altitudes H_3^+ is dominant, in contrast with the earlier work where H⁺ was the major component at all altitudes. The maximum concentration of H_2^+ is at 400 km with a value 2.2 cm⁻³. The peak concentration of He⁺ is at 100 km with a value 1.3×10^{-1} cm⁻³, and the concentration of HeH⁺ is vanishingly small, less than 10^{-5} cm⁻³, at all altitudes.

The dependence of results on the assumed magnitude of the eddy mixing coefficient, K, is illustrated in Fig. 2. An increase in K leads to a decrease in the computed values for the concentration of H, with a corresponding reduction in the source of H+ associated with direct photoionization of H. Increased mixing, however, leads to an increased concentration of He at any level above the turbopause. As a consequence, e5 becomes important as a source of H⁺. The large increase in the computed value for electron density at the ionospheric maximum in the model with $K = 10^8$ cm² sec⁻¹ can be directly attributed to e5 and may provide an indirect means for determination of the eddy diffusion coefficient. The effect is masked by the efficient reaction e6 in the curves with K equal to 5×10^6 and 10^5 cm² sec⁻¹. The magnitude of the effect is relatively insensitive to the rate constant, K, assumed for total reaction of He^+ with H_2 , reactions e3 to e5. It does, however, depend rather critically on the branching ratio $k_5/(k_3 + k_4 + k_5)$. In this study we assumed equal rates for e3 to e5. Laboratory data are urgently required in order to define the relative roles of these reactions.

A recent observation of intense emission from Io in the D lines of atomic sodium (9) has led to the suggestion (6) that Io may have an atmosphere containing significant quantities of nitrogen, hydrogen, and sodium. Nitro-

Scoreboard for Reports: In the past few weeks the editors have received an average of 68 Reports per week and have accepted 12 (17 percent). We plan to accept about 12 reports per week for the next several weeks. In the selection of papers to be published we must deal with several factors: the number of good papers submitted, the number of accepted papers that have not yet been published, the balance of subjects, and length of individual papers.

gen and hydrogen are supplied by photolysis of ammonia, released by evaporation from a layer of surface ice containing dissolved sodium. Gases readily escape Io, forming a toroid around Jupiter. They are eventually ionized and swept up by Jupiter's magnetic field, forming a potential source of trapped radiation, which must ultimately dissipate and enter Jupiter's atmosphere. Io could supply a flux of nitrogen and hydrogen ions as large as 6×10^7 cm⁻² sec⁻¹ averaged over the entire surface of Jupiter, and the flux at high latitudes could be much larger than this value, perhaps by a factor as large as 10³. Fluxes of sodium ions are less well determined, although the planetary average flux at Jupiter is not likely to be much less than 10⁵ cm^{-2} sec⁻¹. Ionization from these Iorelated sources could represent a major perturbation for the ionospheric models presented in this report. It would be particularly difficult to remove sodium ions in the Jovian environment. There are no obvious ionmolecule reactions between Na+ and major components of Jupiter's atmosphere. Radiative recombination could provide the sole loss mechanism down to a level at which three-body reactions become important. The rate constant for three-body recombination should be of the order 10^{-27} cm⁶ \sec^{-1} (10). Sodium ions could survive, therefore, with appreciable density down to a level at which the neutral background density had a value of about 10^{15} cm⁻³; that is, to an altitude of about 40 km, according to the height scale in Figs. 1 and 2.

The possible presence of sodium as a trace component of Jupiter's atmoTable 1. Important reactions in the Jovian ionosphere. The rate constants are in units of $cm^3 sec^{-1}$ for two-body reactions and $cm^6 sec^{-1}$ for three-body reactions.

Reaction number	Reaction		Rate constant	Reference
		Ion produ	ection	
p1	$H_2 + h_p$	\rightarrow H ₂ ⁺ + \dot{e}		
p2	$H_2 + h_{\nu}$	\rightarrow H ⁺ + H + e		
p3	$H_2 + e$	\rightarrow H ₂ ⁺ + 2e		
p 4	$H_2 + e$	\rightarrow H ⁺ + H + 2	e	(2)
p5	$H + h_{\nu}$	\rightarrow H ⁺ + e		
p6	H + e	\rightarrow H ⁺ + 2e		
p7	$He + h_{\nu}$	\rightarrow He ⁺ + e		
p8	He + e	\rightarrow He ⁺ + 2e		
		Ion exch	ange	
e1	$\mathrm{H_{2^{+}}+H_{2}}$	\rightarrow H ₃ ⁺ + H	\sim 5 \times 10 ⁻¹⁰	(14)
e2	$H_{2^{+}} + H$	\rightarrow H ₂ ⁺ + H ⁺	$\sim 1 imes 10^{-10}$	(14)
e3	$\mathrm{He^{+}+H_{2}}$	\rightarrow He + H ₂ ⁺)	
e4	$He^+ + H_2$	\rightarrow HeH ⁺ + H	\downarrow sum < 1 \times 10 ⁻¹³	(15)
e5	$He^+ + H_2$	\rightarrow He + H + H	[+]	
e6	$H^{+} + H_{2} + H_{3}$	\rightarrow H ₃ ⁺ + H ₂	3.2×10^{-29}	(16)
e7	$\mathrm{HeH^{+}+H_{2}}$	\rightarrow H ₃ ⁺ + He	$1.85 imes 10^{-9}$	(17)
	Ion re	emoval/electron-	ion recombination	
r1	$H_{3^{+}} + e$	\rightarrow H ₂ + H	3.8×10^{-7}	(8)
r2	$H_{2^{+}} + e$	\rightarrow H + H	$< 1 \times 10^{-8}$	$(\dot{1}4)$
r3	$HeH^+ + e$	\rightarrow He + H	\sim 1 \times 10 ⁻⁸	(14)
r4	$\mathrm{H}^{+} + e$	\rightarrow H + h_{ν}	$6.6 imes 10^{-12}$	(18)
r5	$\mathrm{He}^{+} + e$	\rightarrow He + h_{ν}	6.6×10^{-12}	(18)

sphere was discussed by Wildt (11). He drew attention to the potential importance of sodium in solution with ammonia as a coloring agent for Jupiter's clouds. The density of sodium ions in equilibrium with atomic sodium would be given approximately (6) by $Ne^2 = 10^5$ [Na] in the region where radiative recombination was the dominant loss mechanism; here Ne defines the electron density, taken to be equal to the density of Na+, and [Na] is the density of neutral Na. If we consider the source of Na associated with Io, and adopt Strobel's (3) estimate for the eddy mixing coefficient, we can estimate a value for the stratospheric density of neutral Na on Jupiter. We calculate a concentration of 10^7 cm⁻³,

sufficient sodium to supply a lowaltitude ionization layer with a density of the order of 10^6 cm⁻³. Larger values could apply if Jupiter has an intrinsic source of Na.

We have attempted to give some estimates of the probable characteristics of an ionosphere which might be detected on Jupiter by Pioneer 10. We have omitted sources of ionization associated with auroral activity, although several electrodynamic models (12) describing the coupling of Jupiter to Io would suggest that aurorally related ionization could be at least locally important. Pioneer 10 offers the prospect for new insights into the physical and chemical processes which regulate conditions in Jupiter's upper atmosphere.

Fig. 1 (left). Model for Jupiter's ionosphere with eddy diffusion coefficient $K = 1 \times 10^5$ cm² sec⁻¹ and He mixing ratio 0.24. The maximum computed values of the HeH⁺, He⁺, and H₂⁺ densities are very low and cannot be drawn on the scale of this figure. Fig. 2 (right). Models for the electron density in Jupiter's ionosphere with eddy diffusion coefficients $K = 1 \times 10^5$, 5×10^6 , and 1×10^8 cm² sec⁻¹ and He mixing ratio 0.24.

Major surprises and departures from the models developed here may occur, and indeed might be expected on the basis of earlier experience. Theoretical models for the martian ionosphere failed totally to account for the initial data obtained by Mariner 4 (13). If the models for Jupiter suffer a similar fate at the hands of Pioneer 10, we may look forward to an exciting era in an expanded arena of planetary aeronomy.

S. K. ATREYA

T. M. DONAHUE Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 MICHAEL B. MCELROY Center for Earth and Planetary Physics, Harvard University, Cambridge, Massachusetts 02138

References and Notes

- J. L. Elliott, L. H. Wasserman, J. Veverka, C. Sagan, W. Liller, *Report CRSR 564* (Center for Radiophysics and Space Research, ., 1973)
- Cornell University, Ithaca, N.Y., 1973). 2. M. B. McElroy, Space Sci. Rev. 14, 460
- (1973).
 D. F. Strobel, J. Atmos. Sci. 30, 489 (1973).
 L. Wallace and D. M. Hunten, Astrophys. J.,
- 5. H. W. Moos and G. J. Rottman, Bull. Am.
- n, w. Moos and G. J. Rottman, Bull. Am. Astron. Soc. 4, 360 (1972).
 M. B. McElroy, Y. L. Yung, R. A. Brown, Astrophys. J. Lett., in press.
 The first recognition of this reaction in the context of the Javier interaction. The first recognition of this reaction in the context of the Jovian ionosphere appears to have been made by A. Dalgarno [in *Physics of Electronic Collisions*, L. M. Branscomb, Ed. (North-Holland, Amsterdam, 1971), vol. 7, p. 381]. It was discussed in later treatments of Jupiter by McElroy (2) and by T. Tanaka and K. Kirao [*Planet. Space Sci.* 21, 751 (1070)]. It is how the later approximately approximat
- 751 (1973)]. In the latter paper, however, the choice of a low value for r1 led to a model rich in H₃⁺ compared to the model discussed here.
- here.
 8. M. T. Leu, M. A. Biondi, R. Johnson, *Phys. Rev.* 8, 413 (1973).
 9. R. A. Brown, *IAU Symp. No.* 65, in press.
 10. D. R. Bates and S. P. Khare, *Proc. Phys. Soc. Lond.* 85, 231 (1965).
 11. R. Wildt, *Mon. Not. R. Astron. Soc.* 99, 616 (1930)
- (1939).
- (1939).
 12. P. Goldreich and D. Lynden-Bell, Astrophys. J. 156, 59 (1969); D. A. Gurnett, *ibid.* 175, 525 (1972).
 13. D. M. Hunten, in *The Atmospheres of Venus and Mars*, J. C. Brandt and M. B. McElroy, Eds. (Gordon & Breach, New York, 1968), 7 147 147
- 14. The rate constants for these reactions have not been measured; the values used in this report are similar to those given by D. M. Hunten [J. Aimos. Sci. 126, 826 (1969)] and S. S. Prasad and L. A. Capone [Icarus 15, 45

- rrasau and L. A. Capone [Icarus 15, 45 (1971)].
 15. F. C. Feshenfeld, A. L. Schmeltekopf, P. D. Goldan, H. I. Schiff, E. E. Ferguson, J. Chem. Phys. 44, 4087 (1966).
 16. T. M. Miller, J. T. Moseley, D. W. Martin, E. W. McDaniel, Phys. Rev. 173, 115 (1968).
 17. W. T. Huntress, Jr., L. P. Theard, J. K. Kim, paper presented at the 26th Gaseous Electronics Conference, University of Wisconsin, Madison, October 1973.
 18. D. R. Bates and A. Dalgarno, Atomic and Molecular Processes (Academic Press, New York, 1962), pp. 245-271.
 19. We thank M. T. Leu, R. Johnsen, and J. N. Bardsley for discussions, and R. Bowser, and especially D. Butler, for numerical assistance. Supported in part by NASA grant NGR-39-
- supported in part by NASA grant NGR-39-011-134 to the University of Pittsburgh, and in part by the Atmospheric Sciences Section of the National Science Foundation under grant GA-33990X to Harvard University.

Sulfuric Acid–Ammonium Sulfate Aerosol: **Optical Detection in the St. Louis Region**

Abstract. Nephelometric sensing of the deliquescence of ammonium sulfate produced by the reaction of sulfuric acid or ammonium bisulfate aerosol with ammonia provides a means for detecting these substances in air. Field experiments show them to be the dominant substances in the submicrometer, light-scattering aerosol in the St. Louis region.

Atmospheric H_2SO_4 aerosol, present as droplets of the acid and its products of neutralization with NH₃ mixed with other substances, have proved to be difficult to detect and quantify by traditional air-sampling methods (1). Knowledge of the existence of these compounds is important for an understanding of the natural sulfur cycle, atmospheric optics, acid rain, and health effects due to air pollution. Almost all the sulfate data in existence today are for the anion alone and provide no information regarding the attached cation. Nonetheless, the important properties of sulfates (toxicity, water solubility, refractive index, particle state and shape, and acidity) depend on the molecular composition and not on the anion alone. The recent CHESS (Community Health and Environmental Surveillance System) report (2), linking SO_4^{2-} with effects on health, cannot be adequately understood unless the molecular forms of the compounds are known. Furthermore, control of the SO_4^{2-} may depend on the molecular form.

Not least among the analytical problems is the reactivity of H_2SO_4 with or on sampling surfaces and with NH₃ to which the sample is probably exposed when handled. As a result, it is attractive to consider in situ methods of analysis which do not require the removal of particles from the air.

Our purposes in this report are to describe a method for sensing aerosols of H_2SO_4 , NH_4HSO_4 , and $(NH_4)_2SO_4$ and to present atmospheric data taken in and near St. Louis, Missouri. The basic apparatus, a humidograph (3), measures the dependence of the lightscattering coefficient of the particulate matter (b_{sp}) on the relative humidity (RH). This system can be operated with the injection of a few parts per million of NH₃ into the sample flow, causing the reaction of H_2SO_4 and NH_4HSO_4 to form $(NH_4)_2SO_4$. Both H_2SO_4 and NH₄HSO₄ aerosols exhibit a monotonic humidogram (the curve of light scattering versus humidity) in which b_{sp} increases continually with increasing RH as a result of the hygroscopic nature of these materials. The $(NH_4)_2SO_4$ humidogram, however, has an inflection point at about 80 percent RH owing to its deliquescent property (4). Aerosol particles of a deliquescent salt remain

Table 1. Effect of NH₃ addition on the ambient air humidogram.

	Location and date			
Category	Tyson Hollow, 21 to 27 September 1973 (88 pairs of measurements)*		St. Louis University, 27 September to 2 October 1973 (258 pairs of measurements)*	
	Number of mea- surements	Percent- age of total	Number of mea- surements	Percent- age of total
Category A: Monotonic before addition of NH ₃ ; NH ₃ caused an inflection at about 80 percent RH	46	52	22	8.5
Category B: Inflection at about 80 percent RH prior to NH_3 addition; NH_3 enhanced the inflection	22	25	5	1.9
Category C: Inflection at 80 percent RH; no change with NH ₃ addition	19	22	64	24.8
Category D: Monotonic curve; no effect with NH ₃ addition	1	1	167	64.8

Not all measurements are included here owing to the fact that a measurement of the effect of the addition of NH₃ was not carried out after each ambient measurement.