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9 m above sea level and unconformably lying 
upon clay, silt, and tuffaceous sediments; 
sample found about 300 m east-northeast of 
Building 1584 in the Kaneohe Marine Corps 
Firing Range on the east side of Ulupau 
Head [photo and cross section of the locality 
presented by H. T. Stearns and K. N. 
Vaksvik, Territ. Hawaii Div. Hydrogr. Bull. 
1 (1935), plate 17A, p. 89; figure 10, p. 122]; 
sample Cll: same locality as sample C10, on 
top of a platform formed by the conglom- 
erate deposits; sample C12: reef limestone 
cropping out of recent beach sand; sample 
taken about 1.8 km east of Kakuku Point 
north of the RCA radio station [see figure 8 
in (16)]; sample C13: beach conglomerate 
cemented in a solution cavity in a coral reef 
of Waimanalo age at the northeastern end 
of the sand beach at the abandoned concrete 
Mokapu Landing on Mokapu Point, Ulupau 
Head (samples supplied by H. T. Stearns); 
sample C14: well-indurated reef limestone 
with oyster shells and basalt boulders, over- 
lain unconformably (?) by a hard limestone 
conglomerate 15 to 30 cm thick from which 
sample C15 was taken, this in turn overlain 
by 15 to 30 cm of red soil and 1 to 5 m 
of black ash; sample taken about 300 m east 
of the southern end of Kulamanu Place at 
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Black Point [see (16), p. 61, and figure V-5 
in (2)]; sample C16: semilithified conglomerate 
with cobbles and boulders of coral and shell 
fragments in coarse calcareous matrix, in two 
pockets on Diamond Head tuff and overlain 
by Leahi aeolianite; sample taken on the cliff 
face 165 m east of Diamond Head lighthouse 
[see figure 7 in (16) for photo of the locality]; 
sample C17: well-indurated limestone with 
sparse coral cobbles cropping out in a patch 
surrounded by Diamond Head tuff at about 
mean tide level; sample found 120 m east of 
the end of Diamond Head Road; sample C18: 
coral embedded in calcareous soil of the 
Kawela soil of Stearns on pitted surface of 
reef limestone from which sample C12 was 
taken; sample taken about 8 m west of the 
site of sample C12. 
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M603 S--S - S -G--R ---M -K-S -- -B- G-B-Z-K-B-F---- 

M167 - I - Q-B-E-L-S-D-P -- S-G-E-S -S -T - 

Fig. 1. The amino terminal sequences of K chains from myeloma proteins with bind- 
ing activity to phosphorylcholine. HVi indicates the extent of the first hypervariable 
region; H8 indicates HOPC 8; T15 indicates TEPC 15; M603 indicates MOPC 603; 
and M167 indicates MOPC 167 [see (14)]. The one-letter amino acid code is: glycine, 
G; alanine, A; valine, V; leucine, L; isoleucine, I; serine, S; threonine, T; proline, P; 
cysteine, C; methionine, M; histidine, H; lysine, K; arginine, R; aspartic acid, D; glu- 
tamic acid, E; asparagine, N; glutamine, Q; aspartic acid or asparagine, B; glutamine 
or glutamic acid, Z; tyrosine, Y; phenylalanine, F; tryptophan, W. The numbering of 
residues for these chains is that taken from a homologous mouse K chain, MOPC 41 
(19). 
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Immunoglobulin Structure: Amino Terminal Sequences of 

Mouse Myeloma Proteins That Bind Phosphorylcholine 

Abstract. The amino terminal sequences of five light and heavy immunoglob- 
ulin chains from myeloma proteins of the BALB/c mouse with binding activity 
to phosphorylcholine are presented. Except for a single substitution in position 4, 
all five heavy chains have identical amino terminal sequences through the first 
hypervariable region. Proteins which share unique (idiotypic) antigenic determi- 
nants are identical through the first hypervariable region of their light and heavy 
chains. Proteins with differing idiotypic determinants have light chains of differing 
amino acid sequence. These observations suggest that the heavy chain plays a 
more important role than the light chain in determining the phosphorylcholine 
binding site. 
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example, dinitrophenol (2), phospho- 
rylcholine (3-5), a-(1 - 3) dextran (6), 
/,-(1 -> 6)-D-galactan (7), a-(1 -> 6)dex- 
tran (8), 8/-(2-> 1)fructosan (8), and 

f/-(2-> 6) fructosan (8). Studies of the 
primary structure of proteins that bind 
the same hapten will be useful for de- 
lineating structure-function relationships 
as well as providing possible insights 
into the genetic mechanism of antibody 
diversity. 

In this study we compare the partial 
amino acid sequences of light (L) and 
heavy (H) chains from five BALB/c 
myeloma proteins that bind phosphoryl- 
choline. Previous studies have indicated 
that three of the 'five phosphorylcholine- 
binding proteins, H8, T15, and S107, 
bind identical groups of related anti- 
gens (9). The other two proteins, 
M603 and M 167, bind groups of re- 
lated antigens which distinguish them 
from each other and from those of the 
first group. In addition, immunologic 
studies have demonstrated that H8, 
T15, and S107 possess the same indi- 
vidual antigenic specificity (idiotype) 
suggesting a high degree of structural 
identity (5). [These proteins are mem- 
bers of the S63-T15 idiotypic group 
(10).] In contrast, the other two pro- 
teins, M603 and M167, have unique 
antigenic determinants, which differen- 
tiate them from each other and from 
the group with the shared idiotype 
(5). We were interested in examining 
the variable regions of the light (VL) 
and heavy (Vn) chains from these 
proteins in order to determine how 
their amino acid sequences correlated 
wi,th the antigen binding and idiotypic 
properties. 

The amino acid sequence analyses of 
partially reduced and alkylated im- 
munoglobulin chains were carried out 
on a Beckman model 890A or 890C 
sequencer with the use of standard 
buffers. The phenylthiohydantoin amino 
acid derivatives were analyzed by gas 
chromatography, by thin-layer chro- 
matography, and by amino acid anal- 
ysis after hydrolysis of the derivatives 
to free amino acids (11). At least two 
sequenator runs were carried out on 
each polypeptide chain. 

The partial amino acid sequences for 
L chains from phosphorylcholine- 
binding immunoglobulins H8, T15, 
S107, M167, and M603 are given in 
Fig. 1. Each of these L chains is of 
the kappa (K) type. Several important 
points can be derived from an analysis 
of these L chain data. It should be 
noted that L chains have three regions, 
residues 28 to 34, 50 to 56, and 90 to 
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C-B-F-- * Fig. 3. The amino terminal sequences 
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]-F-M-Q- 20 from a single base substitution, leucine 

]-F-M-Q- 21 to valine, at position 4 in M167. Heavy 
]-F-M-Q- 21 chains also have hypervariable regions 

whose properties are similar to those 
described for L chains. The first hyper- 
variable region of H chains appears to 
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the three proteins site. Indeed, the H chain sequence 
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Fig. 3. The amino terminal sequences of H chains from myeloma proteins with binding 
activity to phosphorylcholine. HVI indicates the span of the first hypervariable region. 
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V region sequences of their L and H 
chains. 

If identical idiotypic specificities in- 
dicate structural identity, then there 
are two indications that immunoglobu- 
lins of the S63 idiotype are present in 
normal BALB/c mice. First, immuni- 
zation of normal BALB/c mice against 
the phosphorylcholine determinant 
yields immunocytes producing specific 
antibody that can be inhibited in the 
Jerne plaque assay by idiotypic anti- 
serum of the S63 type (17). Second, 
immunoglobulins of the S63 idiotype 
are found in the normal serum of 
BALB/c mice (17a). These results 
suggest that the myeloma proteins with 
phosphorylcholine-binding activity are 
indeed an excellent model system for 
studying the relation between structure 
and function in bona fide antibody 
molecules. 

Since the H chains, even from those 
proteins with differing idiotypic speci- 
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tion, it will be particularly interesting 
to determine whether the entire H 
chains from proteins of differing 
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(for example, T15 and M603). If 
so, perhaps this H chain sequence, or 
one very closely related to it, is a pre- 
requisite for all immunoglobulins with 
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required. 
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The complete analysis of these pro- 
teins as well as those from groups with 
binding activity to other haptens should 
continue to provide insights into the 
structure, genetics, regulation, and evo- 
lution of immunoglobulin molecules. 
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Choline Content of Rat Brain 

Abstract. The free choline concentration in the rat brain was found to be 26.3 

nanomoles per gram of brain tissue. This value was obtained through use of 
6-second microwave irradiation for killing animals and inactivating enzymes, 

followed by a pyrolysis-gas chromatographic assay procedure. The identities of 

compounds measured from brain samples were verified by mass spectrometry. 
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Knowledge of the concentration of 
free choline in the brain is important 
in studies of both the central choliner- 
gic system and phospholipid metabo- 
lism. Controversies presently exist con- 

cerning the sources of free choline in 
the brain, for example, the contribu- 
tions made by choline in the blood 
and the role of choline produced by the 
breakdown of brain phospholipids (1). 
Choline is considered a precursor for 
the synthesis of acetylcholine (2). Ac- 
curate assessment of acetylcholine turn- 
over through the use of labeled choline 

depends on knowledge of the size of 
the endogenous choline pool (3). Cho- 
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line is also a product of acetylcholine 
metabolism, and changes in the rate of 

acetylcholine release have been as- 
sessed by measuring choline in the 

cerebrospinal fluid (4). 
The free choline concentrations re- 

ported recently vary widely (5). The 
values for rat brain range from 700 
nmole per gram of brain tissue (6) 
down to 170 (7), 86.4 (8), and 39 

nmole/g (9). While these values reflect 
both postmortem changes and differ- 

ing analytical techniques (10), it has 
been speculated that the concentration 
of free choline in the brain is even 
lower than currently being reported. A 

SCIENCE, VOL. 183 

line is also a product of acetylcholine 
metabolism, and changes in the rate of 

acetylcholine release have been as- 
sessed by measuring choline in the 

cerebrospinal fluid (4). 
The free choline concentrations re- 

ported recently vary widely (5). The 
values for rat brain range from 700 
nmole per gram of brain tissue (6) 
down to 170 (7), 86.4 (8), and 39 

nmole/g (9). While these values reflect 
both postmortem changes and differ- 

ing analytical techniques (10), it has 
been speculated that the concentration 
of free choline in the brain is even 
lower than currently being reported. A 

SCIENCE, VOL. 183 


	Cit r236_c326: 
	Cit r245_c337: 
	Cit r235_c325: 


