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We see that the analytical result for 

kl, 0.8862, is within the limits (0.707, 
1.225) predicted by Glass in the portion 
of the text which follows his equation 8. 
It is to be compared with the value of 
0.830 which he obtains by means of 

computer simulation. 
As pointed out by Glass, our Eq. 8 

and his equation 1 should be valid only 
in the limit of L going to infinity. For 

(v/F)2? not negligible with respect to 

L, k1 may be a function of L and there 

may indeed be a real discrepancy be- 
tween the analytical results presented 
here and the results obtained in a com- 

puter simulation with a finite L. Further 

analytical results may be obtained by 
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I proposed in my report (i) that 
regular spatial patterns of structures can 
be generated by a process of random 
structure initiation followed by locally 
spreading inhibition which prevents new 
structure formation in ever widening 
regions surrounding each structure. Pro- 
fessor B. N. Boots of the Department 
of Geography, Columbia University, has 
informed me that this model, which I 
believed to be novel, was previously 
proposed as a mechanism for phase 
transformations in solids (2). Arm- 
strong's and Jackson's results for the 
saturating densities for systems with in- 

hibitory fields expanding with constant 
velocity are in agreement with previous 
computations (3). The model has also 
been applied to study the kinetics of 

phase transformations in solids (4) 
and dynamic processes in geography 
(5). 
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published gene frequency data in con- 
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lations to conclude that the data in 
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"neutral mutations theory." We have 
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model appropriate to electrophoretical- 
ly obtained data. At a certain locus, we 
assume that alleles from the infinite 
sequence A1, A., Ax, . . . can occur. 
Any gene is assumed to mutate, with 
(unknown) probability u, to form an 
entirely novel allele not previously seen 
in the population. Under the neutral 
theory, all alleles are assumed to be 
selectively equivalent. There are im- 
portant differences, mathematically as 
well as biologically, between this model 
and that of "classical" genetics. This 
has been noted in particular by Kimura 
and Ohta (2), who state "Although 
most biologists will have no difficulty 
in understanding the nature of molecu- 
lar mutants, some applied mathema- 
ticians working today on population 
genetic theory seem to be still preoccu- 
pied by a classical gene concept, with 
reversible mutation between a pair of 
alleles, say A and a, at a comparable 
rate." One of our doubts about the 
validity of Yamazaki and Maruyama's 
theory is that it uses "classical" analy- 
sis for a molecular genetics problem. 
Specifically, their analysis rests on the 
claim of Maruyama (3) that in a popu- 
lation of fixed size admitting two al- 
leles A and a, with no mutation, the 
distribution of the number of hetero- 
zygotes to appear before loss of one or 
the other allele by random sampling 
has certain invariant properties. In par- 
ticular, it is claimed that this distribu- 
tion is independent of the subdivisional 
structure of the population, and further 
that this invariance property applies 
also for the distribution of the number 
of heterozygotes during the time that 
the frequency of one allele is in any 
specified frequency range (Y, Y + Y). 
While we agree that it is important to 
obtain and use theory which is inde- 
pendent of population structure, it 
must be questioned whether results for 
which the invariance properties are true 
also hold for the molecular genetics 
model. 

Our first point concerns the question 
of mutation, in particular the effect of 
using a mutation-free analysis for a 
molecular genetics model. 

Clearly the mutation rates applying 
for the data analyzed must first be es- 
timated. As an approximate estimate, 
we note that many of the data in ques- 
tion relate to values of r, the number 
of individuals sampled, which are be- 
tween 100 and 300, and that values of 
k (the number of alleles observed) are 
most often 3 or 4. Suppose that N is 
the population size, and denote the 
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value 4Nu by 0. Optimal estimation of 
0 [see table 3 in Ewens (4)] yields, an 
estimate between about 0.3 and 0.6. We 
shall show below that this corresponds 
to a mutation rate too high to be ig- 
nored, and we believe that the assump- 
tion made by Yamazaki and Maruyama 
that "the mutant gene does not mutate 
again to a detectable allele while it is 
heterozygous" cannot be made. (Note 
further that this assumption contradicts 
the statement in the abstract of their 
report that their analysis is independent 
of assumptions concerning mutation 
rate.) [See also Bulmer (5).] 

We now consider what changes the 
inclusion of a term taking account of 
mutation will have. In calculating the 
expected amount of heterozygosity f(Y) 
as a function of the gene frequency Y, 
Yamazaki and Maruyama obtained a 
flat curve for the case of selective neu- 
trality (see their figure 1). In fact, if 
mutation is allowed for, this curve must 
be replaced by the function f(Y) = Ye 
+ (1 - Y)8 [see Ewens' equation 8 in 
(4)]. This curve increases from unity 
at Y = 0 to 21-0 at Y 1/2. For values 
of 0 between 0.3 and 0.6 (the values 
estimated from the data used), this 
represents. an increase from unity to a 
value between 1.4 and 1.65. Thus, 
whereas the data points plotted by Ya- 
mazaki and Maruyama in their figure 
I tend to decrease as Y tends to ?1 (to 
the extent that a regression line for- 
mally fitted to them has a significantly 
negative slope), our revised analysis. 
shows that under the neutrality theory 
these data points should increase no- 
ticeably as Y tends to /2. 

We summarize our view on the ques- 
tion of mutation rate by stating that 
(i) contrary to their claim, Yamazaki 
and Maruyama's theory does depend on 
an assumption concerning mutation 
rate, (ii) the assumed small value is 
contradicted by the data used, (iii) use 
of the correct formula involving mu- 
tation leads to a predicted curve under 
selective neutrality at variance with 
the observed data points, which in any 
event yield a formal regression line 
whose slope differs significantly from 
that suggested by their theory, and (iv) 
when mutation is allowed, the claimed 
invariance of the distribution of the 
number of heterozygotes during the 
fixation process no longer applies. 

Our second point concerns the com- 
plications caused by population sub- 
division and the use of heterozygote 
frequencies to overcome these. The 
data, of course, do not give heterozy- 

gote frequencies directly; rather, these 
frequencies must be inferred from the 
corresponding allele frequencies. Prob- 
lems arise in doing this. Suppose first 
that, in the data, an allele is observed 
in one subpopulation only, with fre- 
quency Y. Then Yamazaki and Maru- 
yama estimate the frequency of hetero- 
zygotes in the whole population as 
2Y(1- Y). Using such estimates from 
each local population they compute the 
average to obtain the points in their 
figure 1. Specifically, if an allele occurs 
with frequencies Y,, Y2 . . ., Y,, in 
m local populations, their estimate of 
heterozygosity is m-l'2Y,(1 - Y8) 
(and their estimate of gene frequency is, 
m- 1Yi.). There are two points rela- 
vant here. First, the heterozygosity for- 
mula assumes random mating within 
local subpopulations, an assumption we 
accept as being usually reasonable. Sec- 
ond, assuming random mating within 
local populations, the formula given is 
incorrect and should be replaced by 
2'p,Yi(1 - Y,), where Pi is the pro- 
portion of all individuals who are in 
subpopulation i (similarly, the gene 
frequency should be estimated by 
>PiY,). The magnitudes of the Pi are 
subject to wide variation, and we can 
have little knowledge of their values. 
This may actually lead to a systematic 
bias in the construction of Yamazaki 
and Maruyama's figure 1. By assuming 
equal p, values, more weight is given 
to intermediate values of the pooled 
heterozygosity (as a function of pooled 
gene frequency) than would be the 
case when pi are not all equal. In fact, 
simulations we have done demonstrate 
that for values of the gene frequency 
near its expectation this bias may pro- 
duce an increase in the accumulated 
heterozygosity of up to 50 percent. 

We conclude by noting that the same 
data as used by Yamazaki and Maru- 
yama indeed can be construed as evi- 
dence against the validity of the neutral 
theory. Johnson and Feldman (6) have 
used the neutral allele frequency dis- 
tribution to calculate the expected value 
of the ratio of observed number of 
alleles, k, to the estimated effective 
number of alleles. In a sample of 2n 
genes consisting of nl, n, ..., n,. of 
the different observed allelic types the 
estimated number of alleles is 

k 

E (n,/2n)2 
i-==l 

[Kimura and Crow (7)]. The expecta- 
tion of the ratio was plotted against k. 
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There was a pronounced discrepancy 
between the expected curve under neu- 

trality and the experimental data points. 
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Ewens and Feldman's criticism of 
our report (1) can be summarized as 
follows: (i) we used a "classical" two- 
allele model for a molecular genetics 
problem; (ii) we used a mutation-free 

analysis; (iii) the gene frequencies in 

subpopulations are not weighted prop- 
erly; (iv) Johnson and Feldman (2) 
used a relationship between actual num- 
ber and effective number of alleles to 
test the validity of neutral-mutation 

theory, and have found that there is 
a pronounced discrepancy between the 

expected curve under the neutrality and 
the observed data. 

The first criticism is misleading, and 
indeed our method does apply to a 
molecular genetics problem. The 
method would be exact when the res- 
olution of gene analysis is done at 
an amino acid site or a nucleotide site, 
and even if the method is applied to 

electrophoretic data, it is exact when 
the sequential order of occurrence of 
mutations can be ascertained. For the 
details, see (3). 

As to the second criticism, our 

theory does apply to a case with rnuta- 

tion, but then it becomes an approxi- 
mation. 

We examined the references that 
were cited in our report, and found 
that the relative frequencies of loci 
having specified numbers of alleles were 
as follows: 

Numtber of alleles 
1 
2 
3 
4 

5 or more 

Fre quency 
0.70 

.15 

.08 

.04 

.03 

Now, using Ewens' optinum estima- 
tion (4), we can calculate the values of 
0 (assuming N 100): 

0 = (0 X 0.70) + (0.178 X 0.15) + 
(0.371 X 0.08) + (0.578 X 0.04) + 

(1 X 0.03) - 0.11 

This value is in good accord with the 
very well known fact that the average 
heterozygosity per individual is about 
0.1 [see (5)]. Thus, the most important 
parameter of Ewens and Feldman's 
comment (0 --0.3 to 0.6) is in error. 
This error probably has occurred be- 
cause they did not include moonomor- 
phic loci in their calculation. 

Although their estimation of 0 is 
shown to be invalid, let us tentatively 
suppose that the flat curve in the 
figure of our report must be corrected 
to the function f(Y) - Y + (1 - Y)J. 
Note that if 0 < 1, this function rises 
sharply near the origin and it is nearly 
flat for most values of Y which are 
used in our analysis. For example, if 
0 = 0.5, f(0) 1, f(0.1) = 1.265, while 
f(0.5) = 1.414; if 0 =0.11, which 
seems to ibe the correct value, f(0) - I, 
f(O.1) = 1.765, while 1(0.5) - 1.853. In 

other wQrds, the value of f(Y) reaches 

nearly the maximum already at Y -. 0.1 
and it is almost flat afterward. It is 

important to know the behavior of f(Y) 
for intermediate values of Y. Contrary 
to Ewens and Feldman's claim, the data 
still fit this "corrected" curve better 
than any other alternatives provided by 
them. Moreover, a new analysis with 

more data (6) shows that the data fit 
better with the expectation under the 
neutral theory than they did in our 
first report (1). 

With regard to Ewens and Feld- 
Ian's third criticism, we have little 
knowledge of the size of each subpopu- 
lation in most organisms. Therefore, it 
is natural to assign equal weight to the 
gene frequency of each subpopulation. 
The value obtained by this method is 
at least unbiased. Note that their 
rmethod using the function f(Y) - Yo is 
valid only for a panmictic population 
which hardly exists in nature, while the 

theory is intended to be applied to 
natural populations. Contrary to their 

strong and very unrealistic assunption 
of panmlixia, our mlethod is far more 
realistic, for it is independent of the 

geographical structure. 
The same relationship mentioned in 

the fourth criticism has been investi- 
gated in (7) anid (8). When the exact 
calculation for the theoretical expecta- 
tion is iiiade, the data appear in very 
good agreement with the expectation 
[see (8)]. 
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