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Dynamics of Expanding Inhibitory Fields Dynamics of Expanding Inhibitory Fields 

Glass (1) has discussed certain statis- 
tical properties of systems in which 
random initiation of structures is fol- 
lowed by the establishment around each 
structure of a growing zone of inhibi- 
tion within which new structures can- 
not be formed. Glass found that the 
saturation density of structures (n*) in 

systems in which the inhibitory field 

spreads at a uniform velocity is given by 

n* - kd(Fal V)/(d + 1) (1) 

where d is the dimensionality of the 

system, Fd (units: I-dt-1) is the rate of 
random structure initiation, v(lt-1) is 
the rate at which the inhibitory fields 

spread, and kd is a dimensionless con- 
stant which depends on d. Although 
Glass was unable to find explicit expres- 
sions for the kd, he did find by comput- 
er simulation that for d= 1, k1 
0.830. 

By attacking the problem in a differ- 
ent manner, I have obtained expressions 
for the fraction of area covered by in- 

hibitory fields at time t and for the 

expected density of structures at time t. 
The value of kd in Eq. 1 is then easily 
obtained. 

Two cases must be examined. In the 
first, the fields may interpenetrate freely, 
and thus do not interfere with one an- 
other's growth. In the second, a field 

stops growing upon contact with the 

edge of another field: there is no further 

growth of either field along the arc 
where they intersect. Fortunately, in the 
situation in which the fields grow at 
a uniform rate, the solutions of these 
two cases are the same. The former 
case, in which the fields can interpene- 
trate freely, is mathematically simpler 
and will be explored first. 
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Consider first an infinite one-dimen- 
sional system. If a line segment of 
length L is marked off at random on a 
line containing randomly distributed 
structures of density X1, then the proba- 
bility R that no structures will be found 
within the segment is given by the zero- 
category Poisson term e-XL. Equiva- 
lently, if structures are being formed 
along a line at the rate Fj(l-1t-l), then 
the probability that no structures will 
be formed within the segment of length 
L in the time t will be e-ILt. If L is 
not constant, but is a continuously vary- 
ing function of time, this probability is 

given by 

t 
R = exp [- F f L(O)d]f (2) 

o 

The integral defines a space-time volume 

U; R is then the probability that no 
structure is located in U. 

Consider now an infinite one-dimen- 
sional system free of structures at time 
t = 0. Note that if no structure is 
formed closer to a randomly selected 

point P than a distance vS before time 
(t - ), then no field can have reached 
P by time t. By use of the above argu- 
ments, it can be seen that a space-time 
volume U' can be defined for this prob- 
lem such that if no structure is formed 
within U', then point P will be free of 
inhibitory fields at time t. The volume 
of U' is calculated in the present case 
by letting L($) = 2v(t - ). The proba- 
bility that no structure will be formed 
within U' is then given by Eq. 2 provided 
that all of U' is available for structure 
formation (that is, that no part of U' 
is occupied by field associated with 
some structure outside U'). This condi- 
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tion will always be satisfied if the in- 
hibitory field spreads at a constant rate. 

But if the fields can freely interpene- 
trate, it is also true that the fields as- 
sociated with any and all structures in 
U' will reach P by t. Therefore P will 
not be covered by inhibitory field at 
time t if and only if U' is free of struc- 
tures. Thus we can calculate 1i(t), the 
probability that a randomly chosen 
point is not covered by an inhibitory 
field at time t, and equivalently the ex- 
pected fraction of points and hence 
length not covered by inhibitory fields 
at time t, by writing L() = 2v(t - ) in 
Eq. 2, obtaining 

t 
i(t) =- exp [-- F f 2(t - )d] 

0 

= e-Fvt2 (3) 

We can use Eq. 3 to calculate the 
density of structures nj(t) at time t. 
Since the rate of structure formation per 
unit length not covered by inhibitory 
fields per unit time is F1, it follows that 
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(5) (5) 

The saturation density nj* is simply 
the limit of n1 as t -* oo, so that 

ni* = f Fldt = (rr/4)?(F/v)1/ (6) 
0 

Thus kl in Eq. 1 equals (7r/4) ' 
- 0.886, which is in good agreement 
with Glass's computer estimate (2). 

This method is readily extended to 
higher dimensions by replacing L(t) by 
an appropriate higher-dimensional form. 
For example, in two dimensions F1 

(l-1t-l) is replaced by Fz(I-2t-1) 
and L(4) by a two-dimensional tar- 
get area A(t)-=rv2(t--_)2. Thus in 
two dimensions the time course of 
areal coverage by inhibitory fields is 
given by 
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from which it follows that 

02(t) = exp(-- 7rFv2t/3) 

from which it follows that 

(7) (7) 

(8) (8) 
t 

n2(t) - i FF22dt 
0 

t 

n2(t) - i FF22dt 
0 

whence whence 

n* = (r/3)-(F )2 fo 3 d 
0 

n* = (r/3)-(F )2 fo 3 d 
0 

(9) (9) 

where r/ is a dummy variable. 
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In d dimensions we replace F, 
(1-lt-1) with Fa(1-dt-1). Since the 
volume of a hypersphere of unit radius 
in d dimensions is wd = 7rd/2/I[(d + 
2)/2] (3), it follows that L(t) can be 
replaced by the d-dimensional volume 

vd(-) = WdV(t - )" (10) 

so that 

Qd(t) = exp[-F dWddtd+-/(d + 1)] (11) 

By use of a change of variables r = 
[Fdodvd/ (d + 1)]l/(d + l)t, we can ob- 
tain immediately 

n* =[wd/(d + l)-d + 1 X 

d oo 

(Fd/v)d+ 1J e-dX+ dn (1.2) 
0 

Thus the functional dependence of n* 
on (Fd/v)"/(dt + I) expressed in Eq. 1 
is confirmed, and the values of Glass's 
constant kd are given by 

1 oo 
kd= [wd/((d+ 1l)] a+1 f e- d+sdi 

0 

-1 _ d / 1 \ 
=d + (d + 1) d+rd + (13) 

The case where field expansion stops 
upon contact with another field can 
now be considered. I will demonstrate 
that if growth proceeds at the constant 
rate v, the solution in the case in which 
field growth stops upon contact is iden- 
tical to that in the case where fields can 
interpenetrate freely. Thus, it will be 
shown that Eqs. 11 to 13 represent 
analytical solutions to the problem 
posed by Glass (1), regardless of 
whether or not the fields can interpene- 
trate. 

A demonstration of the identity of 
solution of the two cases can be based 
on Huygeris' principle (4), which states 
that each point on an advancing wave 
front can be considered as a new point 
source of waves. In our case, we can 
consider each point covered by an in- 
hibitory field at a particular time to 
be a focus from which a new field is 
spreading. Since the rate at which the 
field spreads is a constant, and so is 
independent of the age of the field (or 
ages of the fields, in the case of inter- 
penetration) at a point, the field radiat- 
ing from each point spreads at the 
same rate. 

There are two sets of points covered 
by a field: those on the edge of the field 
(boundary points) and those inside (in- 
terior points). Since the fields of the 
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interior points spread at the same rate 
as those of boundary points, the fields 
of interior points can never grow past 
the boundary, and therefore can never 
affect the spread of the inhibitory fields 
into areas not covered by field. Once a 
boundary point becomes an interior 
point through the coalescence of two 
previously disjunct fields, it cannot af- 
fect the further evolution of the system. 
Thus it does not matter whether the 
field stops growing or continues grow- 
ing when it contacts another field: The 
point of contact has become an interior 
point and no longer influences the dy- 
namics of the system. 

This proof is valid in all dimensions, 
so that Eqs. 11 to 13 constitute a solu- 
tion to the problem when growth rate 
is constant regardless of whether or not 
the fields can interpenetrate. 

Glass (1) originally formulated this 
problem with reference to questions of 
structure dispersion in many disciplines. 
My interest in this problem is more re- 
stricted: I have been studying the 
colonization dynamics of organisms 
which grow radially and compete for 
space. For this reason I have found it 
desirable to distinguish the two cases 
which might arise, that in which field 
interpenetration occurs and that in 
which there is no field interpenetra- 
tion. Mathematically, this distinction is 
not necessary when the growth rate is 
constant, since then the solution to both 
cases is the same in all dimensions. But 
the fact that two distinct cases exist 
must be kept in mind if these methods 
are to be applied in situations in which 
the rate of spread of the inhibitory 
field is a function of structure age; in 
these situations the Huygens argument 
does not apply, and the solutions to 
the two cases may be different. 

ROBERT A. ARMSTRONG 
Department of Ecology and Behavioral 
Biology, University of Minnesota, 
St. Paul 55101 
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Glass (1) presented a model wherein 
regularity appeared in the spacing of 
randomly initiated structures. The regu- 
larity arose from the assumption that a 
structure, once formed at a point, 
produces a growing inhibitory field 
about it in which new structures may 
not start. The process starts with a 
fully available (white) volume and ends 
when the inhibited (black) regions cover 
the entire space. One of the central 
problems of the model is the calculation 
of the mean number of structures 
formed at saturation. The result depends 
on the dimensionality of the space and 
on the assumption made about the 
growth of the inhibitory field (that is, 
two modes of growth were considered, 
constant velocity and diffusion). The es- 
sential parameters of the theory are F, 
the rate of formation of new structures 
per unit volume, per unit time, and v, 
the velocity of growth of the inhibitory 
field (or D, the diffusion constant, in the 
case of the latter growth model). Glass 
presents arguments that the average 
number of structures formed in the 
process is given by 

F \ d/(d+1) 
N*= -- k,l (1) 

for the uniform velocity case and 

N* k',l ) V (2) 

for the case of diffusion. Here d is the 
dimensionality and V the volume of the 
space in which the process occurs. 
Estimates are presented for k, and veri- 
fied by computer simulation. 

In this comment, I will show how the 
kd and k',, may be calculated analytically 
and we present the results for one-, 
two-, and three-dimensional spaces. In 
addition, we state results that may be 
obtained by similar methods for the 
average distribution of lengths of white 
intervals in the one-dimensional, uni- 
form velocity case. 

The basis of the analytical calculation 
is the recognition of the fact that the 
quantity 0(t), defined by Glass as the 
average fraction of the line that is 
white at time t (and still available for 
the formation of new structures), is also 
the probability that a typical point is 
still white. For the uniform velocity 
model, neglecting end effects, the proba- 
bility that a point is white at time to is 
equal to the probability that no new 
structure was initiated in an isosceles 
triangle in x-t space, whose base is of 
length 2vt,, and altitude is. to (see Fig. 1). 
If no initiation takes place in this 
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region the typical point under considera- 
tion will still be white at time to. The 
equation of the sides of the triangle is 

region the typical point under considera- 
tion will still be white at time to. The 
equation of the sides of the triangle is 

X = Xo v(tof - t) (3) 
If we break up the time interval (0, to) 
into small ones dtl, dt2, . . . dt . . . 
dt,, then the probability that no initia- 
tions have occurred in any of the 
"strips" into which the triangle has been 
divided is 

q(to) = 7 [I - 2F^(to - tj)dt]j (4) 
i'Zl 

Taking the natural logarithm of Eq. 4, 
we get 

ln( t) - 

n 
. ln[1 - 2Fi,(to- t,)dt,] (5) 

j-1 

For sufficiently small dtj, the logarithm 
may be expanded and the sum replaced 
by an integral with the result 

to 

lnp(to) =- f 2Fv(t,, - t')dt' (6) 
t' -O 0 

from which 

Q(t) = e-o^t2 (7). 

As the average rate of formation of 
new structures is equal to the product 
of F with the available white length, 
we have 

dN 
d :rFL(e--F (8) dt - 

Integrating from t= 0 to t= -o, the 
result for the average number of struc- 
tures formed in the process is 

-1/2/( I2 

N* =L )-- -5 (9) 

whence k =- r/2/2 = 0.8862. 
The same procedure may be fol- 

lowed for any number of dimensions 
and for either diffusion or constant 
velocity growth. Glass's formulas, Eqs. 
1 and 2, are verified and the results 
for the k,l and k'e are 

k'a(n d+I ) (10) 
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Fig. 1. Region x-t space in which no initia- 
tions may occur for Xo to be white at time 
to. 

The numerical values of the k, and k'd 
are 

kl - 0.8862 k2 0.8794 ks = 0.8960 

k' = 0.6617 k' : 0.3535 k' = 0.2463 
t1 ' 2 3 

(13) 

We see that the analytical result for 

kl, 0.8862, is within the limits (0.707, 
1.225) predicted by Glass in the portion 
of the text which follows his equation 8. 
It is to be compared with the value of 
0.830 which he obtains by means of 

computer simulation. 
As pointed out by Glass, our Eq. 8 

and his equation 1 should be valid only 
in the limit of L going to infinity. For 

(v/F)2? not negligible with respect to 

L, k1 may be a function of L and there 

may indeed be a real discrepancy be- 
tween the analytical results presented 
here and the results obtained in a com- 

puter simulation with a finite L. Further 

analytical results may be obtained by 
similar methods. If s(l,t)dl is the num- 
ber of white strips along the line with 

length between I and I + dl, one may 
show that 

s(l,t) = L(Ft)2e-F^t2e-lt (14) 

and the total number of white sequences 
at time t is 

oo 

s(t) = f s(l,t)dl = LFte-Fvt2 (15) 
I=o 

At present, however, we have not been 
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show that 

s(l,t) = L(Ft)2e-F^t2e-lt (14) 

and the total number of white sequences 
at time t is 

oo 

s(t) = f s(l,t)dl = LFte-Fvt2 (15) 
I=o 

At present, however, we have not been 

able to obtain any analytical results 
about the correlation among centers of 
structures. 
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I proposed in my report (i) that 
regular spatial patterns of structures can 
be generated by a process of random 
structure initiation followed by locally 
spreading inhibition which prevents new 
structure formation in ever widening 
regions surrounding each structure. Pro- 
fessor B. N. Boots of the Department 
of Geography, Columbia University, has 
informed me that this model, which I 
believed to be novel, was previously 
proposed as a mechanism for phase 
transformations in solids (2). Arm- 
strong's and Jackson's results for the 
saturating densities for systems with in- 

hibitory fields expanding with constant 
velocity are in agreement with previous 
computations (3). The model has also 
been applied to study the kinetics of 

phase transformations in solids (4) 
and dynamic processes in geography 
(5). 
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