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Fig. 1. Chromatin fibers spilling out of ruptured nuclei. The degree of fiber swelling 
and the proximity of individual v bodies to each other varies within different regions 
of a single nucleus. Scale bars, 0.2 /Lm. (a) Rat thymus chromatin, positively stained 
with a mixture of 4 percent aqueous phosphotungstic acid and 95 percent ethanol 
(3: 7), rinsed in 95 percent ethanol, and dried in air. (b) Rat thymus chromatin, 
negatively stained with 0.5 percent ammonium molybdate, adjusted to p,H 7.4 to 8.0 
with ammonium hydroxide. (c) Chicken erythrocyte chromatin, negatively stained as 
in (b). Clustering of v bodies is most evident in (c), where groups of three or more 
are readily visualized. Connecting strands are most easily seen in (b). 
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investigators have postulated multiple 
orders of coiling or folding of a funda- 
mental nucleohistone molecule (1, 3). 
Several models have been derived from 
low-angle x-ray diffraction studies, in- 
cluding: four DNA molecules packed 
into a single nucleohistone fibril (4); a 
single DNA double helix and associated 
proteins folded into an irregular super- 
helix 80 to 120 A in diameter and 45 
A in pitch (5); and a single DNA- 

protein fiber constrained into a super- 
helix 100 A in diameter and 120 A in 
pitch (6). Ultrastructural studies have 
also yielded a profusion of models. 
Spreading of chromosomes on a Lang- 
muir trough frequently yields fibrils 
about 250 A in diameter, although dif- 
ferences due to tissue type, presence of 
chelating agents, and method of de- 
hydration and drying have been reported 
(7). Direct adsorption of sheared 
chromatin onto microscope grids has 
revealed a network of fibers approxi- 
mately 100 A wide with numerous side 
branches 80 to 200 A in length (5). 
Spraying of chromatin onto a grid yields 
a network of fibers (8) and separated 
filaments (20 to 30 A in diameter) con- 
taining numerous "nodular" elements 
about 150 A in diameter (9). Thin 
sections of nuclei and chromosomes re- 
veal fragments of threads frequently 
100 to 200 A wide (3, 10, 11). Bram 
and Ris (5) regard the 250-A fiber as 
a folding (or doubling) of a superhelix, 
due to divalent metal ions, and interpret 
the thin-section data as artifacts of 
chelation by buffer ions. Lampert (12) 
views the 250-A filament as a folding 
of the superhelix of Pardon and Wilkins 
(6), and explains the thin-section data 
in terms of shrinkage due to fixation. 

Despite this divergence of views, there 
is a consensus that multiple levels of 

coiling or folding are required to ex- 

plain the observed variation in chro- 
matin fiber widths. 

We have attempted to visualize 
chromatin structure by methods differ- 
ent from those cited above. Interphase 
nuclei were isolated from fresh rat 
thymus (13), rat liver (2), and chicken 
erythrocytes (2), washed and cen- 

trifuged twice in CKM buffer (14) and 
once in 0.2M KC1, suspended in 0.2M 
KCI at a concentration of approxi- 
mately 108 nuclei per milliliter, and 
diluted 200-fold into distilled H2O. 
Nuclei were allowed to swell for 10 to 
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to 4?C. Aliquots of the swollen and 
fixed nuclei were centrifuged through 
10 percent formalin (pH 6.8 to 7.0) 
onto carbon-covered grids, rinsed in 
dilute Kodak Photo-Flo, and dried in 
air, a technique developed by Miller 
and co-workers (15). When examined 
after positive staining, chromatin fibers 
could be readily visualized streaming 
out of ruptured nuclei. Fibers were 
often very long (about 8 tum in length), 
unbranched, and in parallel arrays, and 
revealed irregularly distributed thick 
and thin regions. Frequently, views of 
chromatin fibers (Fig. la) show spheri- 
cal particles, v bodies (16), 60 to 80 
A in diameter, connected by thin fila- 
ments (about 15 A wide). Less stretched 
regions of chromatin revealed apparent 
packing of v bodies. Analysis of fiber 
widths from positively stained prepara- 
tions showed peaks at 75 to 100, 125 
to 150, and possibly 225 to 250 A 

(Fig. 2), consistent with the ranges of 
fiber widths described earlier. Better 
visualization of the v bodies and con- 

necting strands has been obtained by 
?the use of negative stains (Fig. 1, b and 
c). The thickened fiber regions were 
seen to represent clusters of v bodies. 
Measurements of diameters of v bodies 
for the different tissues employed 
yielded the following average diameters 
and standard deviations: rat thymus, 
83 ? 23 A; rat liver, 60 ?+ 16 A; and 
chicken erythrocyte, 63 - 19 A. Con- 
necting strands, for rat thymus chro- 
matin, exhibited average widths of 15 - 
4 A. Figure 2 demonstrates that the 
distribution of diameters of v bodies, 
measured from negatively stained prepa- 
rations, superimposes on the lowest peak 
of fiber diameters calculated from posi- 
tively stained materials. 

For a number of reasons we believe 
that this appearance of chromatin fibers 
as "particles on a string" is related to 
the native configuration and is not an 
artifact of the preparative procedures. 
Washing of isolated nuclei in CKM 
buffer (14) and in 0.2M KCl appears 
to remove some nonhistone but no 
histone protein (17-19) although histone 
migration along the DNA cannot be 
eliminated. However, nuclei so treated 
reveal the same spectrum of chromatin 
fiber widths after fixation and thin sec- 
tioning (2) as those observed for fixed 
and sectioned whole tissue (10). Swell- 
ing of nuclei in water leads to stretch- 
ing and thinning of chromatin fibers, 
as revealed after fixation in water and 
thin sectioning (20), and the disappear- 
ance of several of the low-angle x-ray 
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Fig. 2. Histograms comparing widths of positively stained chromatin fibers (solid lines) 
with diameters of v bodies (broken lines) from negatively stained preparations. Ran- 
dom sampling of fiber widths was obtained by superimposing a lattice of lines 1 inch 
apart on the photographic print and measuring the width of any fiber intersecting the 
grid lines. The positively stained preparations were rat thymus (N = 100 samples) and 
chicken erythrocyte (N = 360). The diameters of v bodies were measured only when 
their edges were clearly defined and not overlapping another v body. The preparations 
for measurements of v bodies were rat thymus (N = 114) and chicken erythrocyte 
(N 200). A calibration grid (54,864 lines per inch) was photographed with each 
set of micrographs, printed, and measured simultaneously with the sample photographs. 

reflections (21). Since addition of diva- 
lent metal ions to water-swollen nuclei 
and chromatin does produce essentially 
normal low-angle x-ray reflections (2, 
21) and a partial return of ultrastruc- 
tural morphology (20), the structural 
changes exhibit some reversibility. Fixa- 
tion with glutaraldehyde does not mark- 
edly perturb low-angle x-ray reflections 
(2), although similar data for formalde- 
hyde are not available. In order to dem- 
onstrate that nuclear isolation and wash- 
ing are not essential for visualization of 
the chromatin units, fresh whole chicken 
erythrocytes were disrupted in cold 0.3 
percent Joy detergent, followed by 
swelling, fixation, and centrifugation 
onto carbon films, a method developed 
by Miller and Bakken (22). Although 
the spreading of chromatin fibers was 
not as good as that shown in Fig. 1, 
particles resembling v bodies were ob- 
served throughout the chromatin. 

Assuming that the v bodies described 
here represent a real packaging of nu- 
cleohistone (23), we calculate some 
of their expected physical properties. 
For an average particle diameter of 70 
A, a spherical shape, and a partial spe- 
cific volume of 0.68 cm3/g (24), we 
estimate an approximate molecular 
weight of 160,000 per v body. Further, 
we assume that every v body has at 
least one histone of each of the five 
classes, and that the sum of their mo- 

lecular weights is 84,000 (25). There- 
fore, the DNA would have a calculated 
molecular weight of about 80,000 and 
a total length of about 400 A, packed 
into the spheroid particle 70 A in diam- 
eter. Thus, a packing ratio (DNA 
length/particle diameter) of about 6/1 
might be expected. If there is significant 
dehydration and shrinkage of the v 
bodies, the calculated particle molecu- 
lar weight would have to be increased. 
The dimensions of ribosomal particles 
and subunits, measured by electron 
microscopy, are roughly half of the 
calculated hydrated volumes from hy- 
drodynamic measurements (26). It 
would be conceivable, therefore, for 
each v body to contain two of each type 
of histone molecule complexed with a 
double-stranded DNA with a molecular 
weight of about 160,000. Further pack- 
aging of the DNA might then represent 
a folded or helical close packing of the 
spherical v bodies under the influence 
of metal cations and noncovalent inter- 
action. Studies should be directed to- 
ward fragmentation of chromatin and 
isolation of particles with properties 
complementary to the v bodies. 
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Our understanding of the mechanisms 
underlying the production of immuno- 
logical unresponsiveness or tolerance 
has increased over the past few years, 
but as yet there is not-and perhaps 
there cannot be-a unified theory of 
tolerance that would explain the data 
obtained from embryonic or neonatal 

transplantation tolerance experiments, 
from tumor enhancement and blocking 
work, from experiments involving dis- 
aggregated serum proteins, monomeric 

flagellin, or pneumococcal polysac- 
charides; nor may we be able to present 
a clear rationale for simultaneously 
understanding both low- and high-zone 
tolerance, both long-lasting and short- 
term tolerance, and both antigen- and 

antibody-mediated tolerance (1). 
Tolerance to sheep red blood cells 

(SRBC) has been obtained both in 
neonatal and adult animals by a pro- 
longed injection schedule with massive 
doses of SRBC (2). More generally, 
however, unresponsiveness has been in- 
duced by treatment with antigen in 
combination with cytotoxic agents, such 
as cyclophosphamide (3, 4). Solubilized 
SRBC fractions have also been used 
in induction of tolerance (5, 6). There 
is no agreement concerning the basis 
for the induced tolerance to SRBC. 

Depending on the schedule of injec- 
tions, the number of cells and the source 
of cells used in restitution experiments, 
and the timing of assessment of toler- 
ance or of abrogation of tolerance, the 
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SRBC fractions have also been used 
in induction of tolerance (5, 6). There 
is no agreement concerning the basis 
for the induced tolerance to SRBC. 

Depending on the schedule of injec- 
tions, the number of cells and the source 
of cells used in restitution experiments, 
and the timing of assessment of toler- 
ance or of abrogation of tolerance, the 
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lack of response to SRBC has been 

variously attributed to loss or inactiva- 
tion of thymus cells, thymus-derived 
cells, bone marrow or bone marrow- 
derived cells, or to combinations of these 
cells (4). The possible functioning of 
suppressor cell populations has also 
been proposed (4, 7). 

We have shown (6) that a super- 
natant fraction (after centrifugation at 
40,000g) obtained after hypotonic lysis 
of SRBC contains material that can 
reduce to about 10 percent of normal 
the subsequent response of adult mice 
to SRBC. The tolerogenic material did 
not appear to be immunogenic as mea- 
sured by induction of direct or indirect 
plaque-forming cells or by production 
of serum agglutinins or hemolysins. 
Reciprocal experiments with hemoly- 
zate preparations of sheep and horse 
red blood cells indicated, moreover, that 
the tolerogenic effect of this supernatant 
is highly specific (6). 

We now describe experiments de- 
signed to characterize the nature of the 
tolerance to SRBC induced by our su- 

pernatant fraction. The experiments 
show that this tolerance is not associ- 
ated with a reduction or elimination of 

imrlunocompetent cells, but rather that 
it appears to be the result of a serum- 
mediated blocking effect. 

Sheep red blood cells, from individual 

sheep were purchased (ARS-Sprague- 
Dawley, Madison); they were washed 
before use. Tolerogenic preparations 
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Table 1. Ability of 107 spleen cells from normal or tolerant donors to respond to sheep red 
blood cells after injection into lethally irradiated normal or tolerant syngeneic host animals; 
PFC, plaque-forming cells; S.E., standard error. 

Experiments Animals PFC ? S.E. 
Host Donor 

(No.) (No.) per spleen 

Normal 15 4573 ? 882 
Normal 3 

Tolerant 15 8878 + 1666 

Normal 13 2751 + 796 
Normal 3 

Tolerant 18 402 ? 94 
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Tolerance to Heterologous Erythrocytes 

Abstract. Injection of a water-soluble nonantigenic fraction obtained from 
lysed sheep red blood cells virtually abolishes the subsequent immune response 
to the red cells. The suppression is systemic and appears to be serum mediated. 
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