
Distributed Relaxation Processes 
in Sensory Adaptation 

Spatial nonuniformity in receptors can explain both the 
curious dynamics and logarithmic statics of adaptation. 

John Thorson and Marguerite Biederman-Thorson 

One strategy of physiologists is based 
upon the fact that the measured dy- 
namics of a process can sometimes 
offer guidance in the search for under- 
lying mechanism. Although this ap- 
proach-called "transfer-function anal- 
ysis" or "input-output analysis"-has 
often proved helpful, it has not led to 
notable insight when applied to single 
cells of receptor organs. Our purpose 
in this article is to describe this appar- 
ent paradox, and to suggest one resolu- 
tion of it. 

The property of receptor cells that 
causes this difficulty is best introduced 
within the context of the usual starting 
procedure of such an analysis, as ap- 
plied to any system. First, one imposes 
small steplike or sinusoidal changes 
upon an input and measures the result- 
ing fluctuations in time of an output. 
Often these fluctuations can be de- 
scribed in a compact mathematical 
form; comparison with the known 
equations of familiar physical processes 
(diffusion, transport delays, chemical 
reactions, or other likely phenomena) 
may then suggest hypotheses about the 
events underlying the system studied. 
If these hypotheses can be tested, the 
study is at least begun. 

This procedure works best if the 
dynamic description turns out to in- 
volve linear differential equations, for 
if the system is fundamentally non- 
linear special problems arise at every 
stage. In fact, many physiological proc- 
esses do exhibit nearly linear dynamics 
if the input changes are made suffi- 
ciently small; a few examples not di- 
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rectly involving receptors will illustrate 
the kind of insight obtainable if the 
strategy succeeds. Lateral inhibition in 
the Limulus visual system cannot follow 
changes in presynaptic nerve-impulse 
rate if the changes occur too rapidly; 
this dynamic effect is commensurate 
with-and may well be determined 
by-the nearly exponential time courses 
of individual inhibitory synaptic poten- 
tials (1). In another example, the way 
in which an insect responds to visual 
patterns moved at various velocities 
suggests underlying circuitry and time 
delays, the neural equivalents of which 
are now being sought (2-5). In still 
another, the dynamic relationship be- 
tween length and tension in striated 
muscle suggests the testable hypothesis 
that it reflects fluctuations in the num- 
ber and configurations of cross-bridges 
linking actin and myosin filaments (6). 

In cases such as these, the above 
strategy has been effective because the 
nearly linear dynamics measured have 
been describable by ordinary first- or 
second-order differential equations and 
thus have had discernible implications 
at the next lower levels of explanation. 
Indeed, one might form the impression 
that linearity guarantees a measure of 
success. 

It is here that the difficulty associ- 
ated with sensory transduction arises. 
Although most receptor cells do re- 
spond nearly linearly to small perturba- 
tions of their inputs, their character- 
istic dynamics have not generally 
served to suggest testable ideas about 
their physical nature. The most com- 
mon problem is that the time courses 
of the measured responses to step inputs 
often obey closely a power law, chang- 
ing as t-k (where t is time and k is a 
constant between 0 and 1) over several 
decades of time after the stimulus; 

moreover, the frequency response can 
involve the kth power of frequency, and 
the corresponding linear differential 
equations, as we shall see, can be of 
fractional order. Thus the usual expo- 
nential decays and integral-order dif- 
ferential equations-the ordinary guides 
to likely physical explanations-are not 
explicitly available. 

To try to relate these linear power- 
law dynamics to cellular physiology, we 
have borrowed some of the "distrib- 
uted-relaxation" methods from the 
fields of electrophysics and polymer 
viscoelasticity. Surprisingly, the expla- 
nations to which we have been led not 
only interpret the power-law dynamics 
for small input changes, but also offer 
a novel basis for the steady-state non- 
linear "range compression" observed 
when the inputs to such transducers 
undergo large changes. 

The linear power-law dynamics 
should not be confused with the non- 
linear power-law response of sensory 
systems over many decades of input 
magnitude, to which Stevens (7) has 
called attention. The difference is that 
in the linear power-law dynamics the 
noninteger exponent k applies to time 
(t-k) and frequency (fk), whereas in 
the nonlinear power-law behavior the k 
applies to the input itself (Pk). Some 
relationships between the two descrip- 
tions will, however, be developed. 

Before proceeding to illustrate how 
nonuniformity over a cell can account 
for these power-law dynamics-using 
photoreception in the Limulus eye as 
an example-we describe briefly the 
recent studies which establish the 
"power-law dynamics problem." 

Experimental Basis 

Figure 1 shows the time dependence 
of the outputs of several receptor prep- 
arations. In each case, a small, main- 
tained step increase in the stimulus 
has been imposed at time t = 0. After 
the initial fluctuations (not plotted here) 
associated with the high-frequency dy- 
namics of the receptor have settled out, 
the response (discharge rate in im- 
pulses per second) drifts slowly back 
toward some maintained level. Curi- 
ously, this drift appears for a consider- 
able time as an almost straight line 
when plotted, as in Fig. 1, on double- 
logarithmic coordinates. Because such 
a line can be represented by the equa- 
tion 

log (Response) = log C - k log (t) 
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Fig. 2. Frequency responses of discharge rate in four kinds of single axons with small- 

signal, constant-amplitude sinusoidal driving of the stimulus. Gain at each frequency 

(in "power" decibels) is 20 logo0(peak-to-peak response amplitude/arbitrary reference 

level). Phase (0) is the phase lead of the nearly sinusoidal response with respect to 

the input waveform, so that negative values represent phase lags. Solid straight lines 

emphasize regions in which the shape of the gain data may be described approximately 

by the gain (27rWf) of the transfer function s', and dashed lines the corresponding 

phase lead (kr/2 radians) for s'. A, C, and D represent companion experiments upon 

the receptors of A, C, and D in Fig. 1, and the values of k match. Companion data 

for the two different experiments labeled B in Figs. 1 and 2 are not available. A, Cock- 

roach-leg mechanoreceptor (8, 73); B, averaged spike responses of "on" (solid circles) 

and "off" (open circles) ganglion cells of the cat retina under sinusoidal modulation 

of diffuse retinal illumination (62), replotted in decibels. At low frequencies, except 

for the small phase lead, the on-cell is nearly in phase, and the off-cell nearly 180? 

out of phase, with the modulating light; therefore the off-cell phases have been shifted 

180? and plotted with those of the on-cell. The two slopes require phases of 42? and 

53?- only one dashed line is shown, at 47?. C, Crayfish stretch receptor; vertical bars 

give range of phase uncertainty (9). D, single Limulus eccentric-cell response (10) to 

20 percent modulation of illumination (solid circles, 610 lumen/m2; open circles, 6 

lumen/m2; both in a spot of 100 Am diameter) to which the ommatidium had been 

adapted for about 30 minutes. The dashed-line phase requirement (24?) is that for 

the k - 0.27 slope. The extra points at 0.045 hz are from a repeat of that condition at 

the end of each frequency-response measurement series. The variations in frequency 

response of a locust optomotor response (not shown), with change of background 

intensity, are also represented closely over three decades of frequency by s' (11). 
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where C and k are constants giving 
magnitude and slope, the response it- 
self is decaying as 

Response = Ct-k, t > 0 

These power-law decays have been 
shown to be characteristic of the 
"small-signal" responses of many re- 

ceptors; in such measurements, recep- 
tors are stimulated by small perturba- 
tions of their inputs within a range 
for which they are known to behave 
nearly linearly by a variety of tests 

(8-11). Therefore, despite the trouble- 
some exponent, we are dealing with 

nearly linear dynamics: if the input 
is doubled, the response is doubled and 
the shape of the transient response 
waveform is unchanged. 

A central notion in dynamic analy- 
sis is that it sometimes helps to con- 
sider the description of a system both 
in the time domain (as in Fig. 1) and 
in the frequency domain. Although the 

temporal response to a step increase of 
the input is often simpler to measure 

experimentally, the more cumbersome 
measurements of frequency response 
can provide noise rejection or a more 
sensitive guide to the behavior of a 

system over a restricted range of rates 
of change of the input. Moreover, for 
linear systems full knowledge of the 

frequency response (or transfer func- 

tion) serves to define the step response, 
and vice versa. 

The transfer function (12) of a 

linear transducer with step response 
t-7' is proportional to sk, where s is 

the Laplace variable (13). The cor- 

responding frequency response there- 
fore (14) has gain which varies as /fk 

where f is frequency (a straight line 

of slope k if log gain is plotted against 

log frequency) and has a frequency- 
independent phase lead of k X 90? with 

respect to a constant-amplitude sinus- 

oidal input. Figure 2 shows that both 

expectations are approximately realized 
over two or more decades of frequency 
for the receptors A, C, and D of Fig. 
1 (Fig. lB and Fig. 2B represent dif- 

ferent receptors). Moreover, the values 

of k correspond. 
Power-law dynamics are also im- 

plicit in another kind of experiment. 
In studies of movement perception, 
where a periodic pattern or other stim- 

ulus is moved past the eye with a range 
of velocities, receptors are stimulated 

at differing frequencies. Since the re- 

sponses are "turning tendencies" or 

discharges of higher-order units, the 
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Fig. 3. The magic of the number 0.7 + 0.1. Four experiments 
quantifying visual movement perception in which power-law 
dynamics of receptors or further neural processing (or of both) 
can be implied. A, Average discharge rate of a class-2 ganglion 
cell in the frog retina plotted against the angular velocity of an 
0.7? black dot moved through its visual field (74); B, turning 
tendency of the fly Eristalis (compensatory angular velocity of 
a substrate held by the legs as a striped drum is rotated about 
the fixed animal) as a function of angular velocity of the sur- 
rounding striped drum (75); C, turning tendency (a linear 
function of the probability of turning in the direction of striped- 
drum rotation) of the weevil Chlorophanus, walking on a Y- 
maze globe, as a function of drum angular velocity (76), re- 
plotted logarithmically; D, averaged turning torques of six fixed, 
flying houseflies as a function of angular velocity of a striped 
drum (77), replotted logarithmically. 

interpretation is less direct than in ex- 
periments with single cells (Fig. 2), 
but it is noteworthy that power-law 
relationships suggesting s7-like behavior 
are often reported. In Fig. 3 we show 
a number of examples of this phenom- 
enon. 

Current Interpretations in 

Sensory Physiology 

The fact that data on sensory adap- 
tation are often of the form t-k was 
first called to our attention by Chap- 
man and Smith (8). They repeated 
Pringle and Wilson's (15) dynamic 
analysis of the cockroach-leg mechano- 
receptor, found step responses such as 
those in Fig. 1, and showed that the 
frequency response included a corre- 
sponding s"-like region -(Fig. 2). 
Pringle and Wilson had originally de- 
scribed these step responses with a sum 
of three empirically chosen exponential 
decays. As we shall see below, if enough 
exponentials are used such a descrip- 
tion can be as good as t-k. 

To our knowledge, just three specific 
mechanisms have been suggested as 
possible explanations of the sM-like be- 
havior of single receptors. Brown and 
Stein (9), finding that sk (with k in 
the region 0.2 to 0.3) described ap- 
proximately the dynamics of their 
crayfish stretch-receptor preparations, 
discussed the behavior of power- 
law spring (that is, one for which 
tension is a power function of length) 
connected to a viscous element. But 
as they pointed out, there are major 
difficulties in fitting this idea to their 
step-response data. Moreover, the 
small-signal sinusoidal response of 
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fractional order is not available at all. 
A second set of suggestions stems 

from a property of the diffusion (or 
"cable" or "heat") equation; that is, 
solutions for the Laplace transform of 
the variable treated involve the func- 
tion s0-5. For example, the current en- 
tering a suitable transmission line is 
just the half-order derivative (13) of 
time-varying input voltage. Reichardt 
and Varjui (2), pursuing the possibility 
that data from optomotor responses of 
weevils might require s0-5 filters in the 
visual input channels, suggested that 
such a diffusional process could be 
responsible. More recently, Terzuolo 
and Knox (16), finding that lobster 
stretch receptors behave more accord- 
ing to s0.5 than the s0-25 that approxi- 
mates the crayfish stretch-receptor 
responses in Fig. 2, pointed out that 
the dynamics relating intradendritic 
pressure to membrane potential (17) 
can involve a second-order nonlinear 
equation, and along with other factors 
account approximately for the data 
from lobster stretch receptors. 

Still another approach is to ask, as 
Cole and Cole (18) did in 1941, 
whether a plausible Gaussian distribu- 
tion about a single average rate con- 
stant might "flatten" or "smear" the 
curves expected from a simple first- 
order process sufficiently to account, 
within experimental error, for frac- 
tional-order dynamics. However, as 
Cole and Cole pointed out and as will 
become clear in our analysis, the dis- 
tribution would have to be so broad 
that the attractive notion of variability 
about a single characteristic rate con- 
stant would tend to be lost. Other frac- 
tional-order analyses by the Coles and 
their colleagues (19) treat tissue and 
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membrane impedance at very high fre- 
quencies. 

None of the above suggestions suf- 
fices for two or more decades of, say, 
S0O31 or s076 at low frequencies as in 
Figs. 1 and 2. There may exist other, 
elementary physical processes ,that pro- 
duce inherently such linear dynamics, 
but we have not been able to think of 
any. 

Given this void, we suggested (10) 
that one might simply treat the power- 
law behavior as a weighted summation 
over a broad range of simpler expo- 
nential relaxation processes, as was 
discussed in the early literature of 
electrophysics and other fields. One can 
then ask whether there are physiological 
variables and relationships that corre- 
spond to such rules. We shall show that 
this procedure in fact generates testable 
hypotheses. 

von Schweidler's Algorithm 

The earliest example we have found 
of the distributed approach to power- 
law phenomena is in the early electro- 
physics literature (20) where t-7 de- 
cays were often reported. for the 
discharge of charged Leyden jars. In 
an attempt to interpret such data, von 
Schweidler (21) pointed out in 1907 
that by making use of the definition 
of the gamma function, 

'(x) f xxle-Xdx 
0 

one can write 

t-k _= 1 00 - 
r(k) f a-le- tda 

0 
(1) 
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discharge gain and phase, above 0.2 hz, from that of the estimated generato:-potential response corresponds quantitatively (10) to 
the known effects of "self-inhibitory" dynamics of the eccentric c Ii. Leveling off of the low-frequency response below 0.001 hz 
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1.4-hz gain-the choice affects principally the value of a in the ana:ysls. The solid black lines represent gain and phase of the trans- 
fer function of Eq. 8 with parameters described in the text; the coarse dashed lines, those for the first-order "linear lead" network 
(s +- a,)/(s + a2) with center frequency at 0.013 hz and a total gain transition of 17 db. 

In these equations, x is an arbitrary 
independent variable, A is a variable of 
integration, and a is a rate constant. 
Thus the t-'k behavior can in principle 
arise from the summation of many dif- 
ferent exponential decays (e-"t), each 
making a contribution which is pro- 
portional to its own rate constant a 
raised to the power (k- 1). Since first- 
order kinetics-giving exponential de- 
cays-are common in nature, von 
Schweidler's equation should be a key 
to hypotheses about the events under- 
lying power-law decays (22). 

The transfer function of a device 
having a step response e-at is that of 
the first-order high-pass filter, s/ (s + a); 
high-frequency signals are transmitted 
unaltered, but at frequencies below 
a/ 27- transmission is proportional to 

frequency. Just as t-~ was decomposed 
into a linear combination of expo- 
nential decays with weighting function 
a1'-1, stc can be represented as a sum 
over a continuum of high-pass filters 
with the same weighting function. That 

is, 

1 r? sd (2) 

'=r(k) F(1 I- k) s -+ 
da 

Equation 2 can be read directly as 
an algorithm for the synthesis of an 
s'-like process. For example, to inter- 

pret the fractional-order dynamics of a 

sensory transducer, there are three 

things wanted. (i) There must be a 
first-order (that is, exponential) relax- 
ation process, corresponding to s/ 
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(s +a), which is rate-limiting (that is, 
its effect is manifest at the output) and 
which is quasilinear for small stimulus 
changes; the rate constant for this proc- 
ess is a. (ii) There must be many 
such processes, working simultaneously 
in the receptor in such a way that a 
is distinctly different for members of 
this ensemble. To account for two fre- 
quency decades of ds", a must be dis- 
tributed (or have a probability density) 
approximately as al'-1 over about two 
decades of variation of a. (iii) The 
outputs of all of these individual re- 
laxation processes must be, approxi- 
mately, summed in the output (for 
example, the generator potential) of 
the transducer. If these requirements are 
satisfied, the frequency response of the 
process will correspond to that of s:. 

Limulus Eccentric Celi 

The nearly fractional-order dynamic 
response of the single uninhibited 
Limulus ommatidium (10) is illus- 
trated in Figs. 2 and 4. It extends from 
about 0.2 hz down to the lowest 

frequency we have applied (0.004 
hz) and probably to frequencies be- 
low 0.001 hz where the estimated 

steady-state response would be attained 
(10). At least two decades of s0.:7-like 

behavior are implied. 
An eminently suitable relaxation 

process, which one can try in von 
Schweidler's algorithm, has already 

been suggested and shown plausible. 
Rushton (23) pointed out that the dis- 
crete potentials or "bumps" discovered 
by Yeandle (24) at low levels of illu- 
mination in the membrane potential of 
the Limulus eccentric cell, might un- 
derlie the "range compression" (25) or 
nearly logarithmic response of the eye 
to light. Since at low levels of illumi- 
nation there appear to be rare large 
bumps and at higher levels frequent 
small bumps, it was tempting to ask 
whether bump size might be decreasing 
wilh increased light in just such a way 
as to produce the overall logarithmic 
response of the cell in the steady state. 
More recently, it has been shown that 
each bump is probably triggered by 
the absorption of a single photon (26), 
and that adaptation can occur locally- 
that is, to a different extent in different 
parts of the single receptor (27-30). 

If bumps conforming to these rules 
were actually being summed to pro- 
duce the generator potential, then one 
should be able to describe the genera- 
tor potential in terms of the properties 
of a sihot-noise process, with the shots 
representing bumps of a size and rate 
appropriate for the average intensity 
being applied. Dodge et al. (31) have 
shown that this view is compatible with 
the measured fluctuations of the gener- 
ator potential. 

As Adolph (32) and Dodge et al. 
(33) have pointed out, if bump size 
were determined by a balance between 

light intensity and some restoring proc- 
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ess, then after a change in light inten- 
sity the bump size should take some 
time to "adapt" to a new equilibrium 
amplitude. Similarly, after a brief flash 
of bright light superimposed upon a 
steady background, bump size should 
be transiently depressed-in further 
agreement with their experimental re- 
sults (31). The properties of such an 
"adapting bump" process are those of a 
high-pass filter; rapid changes of light 
are reflected in large changes in the out- 
put; but during slow changes the bumps 
have time to adapt so that less change 
in output occurs. Dodge et al. (33) 
represented this notion by fitting a first- 
order high-pass filter, with arbitrary 
rate constant, to their low-frequency 
data (which include only frequencies 
greater than 0.1 hz so that the sl7 region 
is not apparent) in the same way that 
Pinter (34) described his Limnulus 
generator-potential data at low fre- 
quencies (>0.02 hz). 

To apply von Schweidler's algorithm, 
we must formulate the adapting-bump 
idea more precisely. It seems clear that 
absorption of photons by rhodopsin, 
located in the micovilli of the retinula 
cells surrounding the eccentric-cell 
dendrite (35), leads to an increased 

conductance between the inside of the 
eccentric cell and a remote reference 
electrode (36, 37). Such an excitatory 
conductance change, with equilibrium 
potential near zero (37), can, of course 
account for the generator potential 
measured in the soma and for the 
spikes triggered in the axon. 

It is not clear, however, just where 
or in what way this conductance 
change occurs. The measurements of 
Borsellino et al. (38) imply that there 
is at least as much change between 
retinula cell and remote tissue as there 
is between eccentric-cell dendrite and 
retinula cell. Moreover, if one photon 
is to induce a bump of several milli- 
volts, amplification must occur. Adolph 
(32) has discussed this process in 
terms of the effect of a transmitter sub- 
stance released by rhodopsin isomeri- 
zation which acts on the relevant mem- 
branes as in a chemical synapse. Bass 
and Moore (39), on the other hand, 
have shown that if the membrane is 
electrically excitable, the opening of a 
single pore in the retinula-cell mem- 
brane by a photon capture might lead 
to sufficient active spread of depolari- 
zation to account for the conductance 
change (see also 40). 

Exponentially Restored, Poisson- 

Released Processes 

Because we are concerned with the 
dynamics of local bump adaptation as 
they affect the next higher level of 
organization of the eccentric cell (that 
is, the generator potential), we shall 
consider here only the behavior of a 
broad class of such bump-producing 
mechanisms, defined as follows: (i) 
There is a large ensemble of sites in 
each region of the rhabdome (for ex- 
ample, two such sites are illustrated in 
the region labeled dx in Fig. 5). A site 
is defined operationally by the follow- 
ing considerations. Each site captures 
photons from the local instantaneous 
photon flux I(t) according to an effec- 
tive cross section v. (If there are m 
rhodopsin molecules serving a site, 
v/m is the net molecular cross section 
of rhodopsin for such captures.) (ii) 
Whenever a site, say the ith one, cap- 
tures a photon, it causes a transient 
conductance change of standard shape 
and of amplitude proportional to its 
normalized "capability" qi at that in- 
stant, as illustrated in Fig. 5 for two 
such sites. This event reduces qi to 
zero, following which it is restored by 

dx 

I I 
I ret. cell I I 

I| ,r-site 21 e . axon 
sit 

1 VN^eccentric cel 
l 

soma 
dendrite I I 

ret. cell I ! 

,4 4r 4 ' 4 r4 I 

A T 

Photon capture 

L 'K I time 

tI to 

4' 
t ill ot ctr Fig. 5 (left). Schematic diagram of the Limulus eccentric-cell 

SITE 2 oton capture photoreceptor. The undulating borders of the retinula cells sche- 
matize the rhabdomal microvilli where the visual pigment 

Capability q 2 /' M/ / A//} rhodopsin resides. Two (solid circles) of the large number of 
Capabilit-y q2 - transduction "sites" (see text) in each small region dx of the 

Conductance A { j time rhabdome are labeled sites 1 and 2 (dx is an elemental incre- 
Contribution ? I... \Ji \ZS, > ment along the x (longitudinal) axis of the dendrite over which 

t2 to we integrate). Below, the exponentially restored, Poisson- 
released (ERPR) operation of the variable q for the two sites, 

and the corresponding "bumps" of conductance change are illustrated. The exponential recovery of q is probably somewhat 
slower, with respect to the time-scale of the bumps, than shown here; tl and t2 for the two sites are the times of most recent 
photon capture, at observation time to, used to derive the light-intensity-to-conductance dynamics (42). Fig. 6 (right). "Dis- 
tributed efficacy" formulation for the hypothetical case in which all receptor nonuniformity is treated as though spatial variation 
of photon flux sufficed for the distributed dynamics. The three x values illustrated represent the continuum actually treated. The 
problem is to find the function l(x,t) [= I(O,t) (x)] such that the total conductance change GT(t) agrees with estimates of the 
conductance dynamics of the cell. The rate constants of the local ERPR processes are functions of the local photon flux. 

light 

SITE 1 

Capability ql 

Conductance 
Contribution 

I 
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metabolic work at a rate proportional 
to its instantaneous state of depletion- 
so that qi varies between 0 and 1 as 

qi(to,t) = I - e-a(t, - t,) (3) 

where t, is the time of observation of 
the system, t, is the time of the most 
recent photon capture by the ith site, 
and a is a restoration rate constant. 

In the case of a transmitter system, 
a would correspond to the rate con- 
stant for a process by which transmit- 
ter packets or vesicles are replenished 
following release; in the photoexcita- 
tion theory of Bass and Moore, a could 
represent the rate at which an ion 
pump or diffusion can restore the es- 
sential local ionic imbalances in the 
confined spaces about the microvilli. 
In either case, as shown in Fig. 5, it is 
clear that this set of rules, which, for 
a local ensemble of such sites within 
dx, we call an exponentially restored, 
Poisson-released (ERPR) process, pro- 
duces large infrequent bumps in low 
photon fluxes and small frequent ones 
in high fluxes. 

Now let us consider the dynamics 
of the ERPR process, for comparison 
with von Schweidler's algorithm. The 
problem is to find the time-varying 
conductance produced by summed ac- 
tion of the local ensemble (within dx) 
of n such sites, when all are subjected 
to a time-varying local photon flux 

l(t). 
We follow Dodge et al. (31) in 

treating the conductance underlying 
the generator potential as a shot-noise 
signal (each shot being one bump) 
whose amplitude has an expectation 
equal to a product of the rate, the 
effective amplitude, and the effective 
duration of such shots. Here, however, 
we assume for the moment a standard 
shape for all shots (41) so that it is 

only their amplitudes and rates that 

vary, in accordance with q and I, re- 

spectively. Moreover, the present proc- 
ess is nonstationary in time, and our 

averaging will be done over the large 
ensemble of sites in each dx in Fig. 5. 
We estimate the instantaneous expecta- 
tion G(t) of local conductance as pro- 
portional to the product of instantane- 
ous local photon capture rate vl(t) 
and the instantaneous expectation of 
local capability q(t), with all expecta- 
tions taken over the local ensemble of 
n sites. That is, 

G(t) = Covl(t)q(t) 

.1 

(x) 
.01 

.001 \ \ 

0 .2 .4 .6 .8 1 

x/b 

Fig. 7. The spatial efficacy function ~(x) 
which produces both the sk-like small- 
signal dynamics of Fig. 4 and the nearly 
logarithmic steady-state response of Fig. 
8, derived as described in the text. The 
function e-'" is included for comparison. 

neous expected rate of release of a 
"transmitter," to which the transmitter 
concentration is about proportional, 
over a wide range, if the transmitter is 
very rapidly inactivated (that is, if the 
shots are brief) at a rate proportional 
to its concentration. 

It remains for us to characterize 

q(t) for the local ensemble in a time- 
varying photon flux. It can be shown 

(42) that q(t) is conveniently treated 
in terms of its differential equation, 

dq(t) = a - [a 
+ 

vI(t)]q(t) (5) 
dt 

and one initial condition. For example, 
with l(t) =-1 in the steady state, the 
value of q in the steady state is 

_( = a 
q a- + v o 

which can be taken as an initial condi- 
tion in computing the response to sub- 

sequent changes of intensity. 
Equation 5 shows that the rate of 

change of average bump height de- 

pends upon the local light intensity at 
each instant of time. For comparison 
with the data for the small-signal dy- 
namics, however, we need the transfer 
function relating small fractional 

changes of intensity i(t) to small frac- 
tional changes of conductance g(t). 
Incorporating small signals about 1, 

G, and q in Eqs. 4 and 5 and taking 
Laplace transforms, one finds, to first 
order in the small changes, that the 
local light-to-conductance transfer func- 
tion of -the ERPR process in each dx 

(4) is 

where Co is a constant. This product 
may also be thought of as the instanta- 
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g(s) _ C s + 
i(s) s + a + vIo 

where C is a constant, independent of 
I0 and s. This equation describes a first- 
order high-pass filter or "linear lead 
network" with a transition of gain 
from Ca/(a + vlo), at frequencies less 
than a/27r, to C at frequencies greater 
than (a + vI(,)/2:. It specifies, quanti- 
tatively, the way in which small rapid 
changes of intensity produce larger 
changes of conductance than do small 
slow changes. 

A Range of Rate Constants 

The importance of Eq. 6, in terms 
of von Schweidler's algorithm, is that 
it defines, in the small-signal behavior 
of the ERPR process, a first-order re- 
laxation having a rate constant (a + vl, 
which can be considered analogous to 
a in Eqs. 1 and 2) that is dependent 
upon three specific physical quantities. 
These are the metabolic restoration 
rate a, the photon-capture cross section 
v, and average local light intensity 10, 
each applying in the small region dx 
of Fig. 5. If any or all of these take on 
different values in different parts of the 
rhabdome, we are in a position to ask 
whether von Schweidler's second re- 
quirement, a suitable range of rate con- 
stants, is fulfilled. 

Although it is plausible that a and 
v vary over the rhabdome, perhaps be- 
cause of nonuniform mitochondrial 
density (43), and varying "site"-to- 
rhodopsin ratios, respectively, it is con- 
venient to discuss the required nonuni- 
formity in terms of the local light flux 
itself. A collimated photon flux enter- 

ing a uniformly absorbing medium de- 
clines exponentially with depth of 
penetration. Absorption by rhodopsin 
alone, in the 100-micrometer depth of 
the Limulus rhabdome, ought not to 
reduce the entrant flux by more than 
about 15 percent (35). Effects of back 
and side scattering, absorption by struc- 
tures other than rhodopsin, and re- 
fractive effects at the tip of the rhab- 
dome will certainly cause greater 
nonuniformity. Local illumination can 

apparently vary by a factor of 100 
over the photosensitive region of the 
retinal receptor of the squid eye (28, 
29). Although the extent of these ef- 
fects is unknown in Limulus, Dodge 
et al. (33) comment that their failure 
to describe their low-frequency data 
with a first-order filter may imply non- 
uniform light absorption. Perhaps the 
most likely contributor to nonuniform- 

ity of light in the light-adapted state in 
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Limulus is the presence of pigment 
granules which migrate, in light adapta- 
tion, to surround the rhabdome (44) 
and can reduce internal reflection of 
light within it. For simplicity in this 
example, then, we will discuss the non- 
uniformity of the rate constants in 
terms of an equivalent spatial variation 
of local light intensity along the rhab- 
dome, as shown schematically in Fig. 
6. In general, however, we use the term 
"nonuniform efficacy" as a reminder 
that we could allow a and v to vary as 
well, and that the method applies to 
distributed formulations other than that 
in the present shortage. 

Summation of Conductance Changes 

Finally, consider von Schweidler's 
third requirement. Here, it dictates that 
the conductance changes produced by 
all of the local ERPR processes (at 
different x's in Fig. 5) must be approx- 
imately summed in their combined ef- 
fect upon generator potential and spike 
initiation. 

This amounts to our treating the 
idealized eccentric-cell dendrite as hav- 
ing a very large length constant, so 
that the total conductance change as 
measured at the soma is nearly the 
sum of the local conductance changes 
per unit length as schematized in Fig. 
6. The dendrite tapers from about 24 
[jm to 4 tim in its 100-xum length (45). 
Although the large size suggests the 
assumption of large length constant, 
the taper is of interest and could in 
principle be factored into our efficacy 
distribution once the stimulus-sensitive 
membranes in the ommatidium are 
identified with certainty. Moreover, for 
the low-frequency small-signal dynam- 
ics at a single average input intensity 
we can for the moment ignore the non- 
linear transformation between conduct- 
ance and generator potential, and 
proceed to compare our conductance 
calculation (for frequency-response 
shape) directly with the estimated gen- 
erator-potential dynamics of Fig. 4. 

If the conductance change per unit 
length is determined in each region dx 
by Eqs. 4 and 5, where G, I, and q 
are now written as functions of x as 
well as of t, then the total conductance 
change GT(t) of the idealized dendrite 
(of length b) is 

b 

Gr(t) = f G(x,t)dx (7) 
0 
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Introducing small fractional changes 
gT(t) of total conductance GT(t) and 
the small fractional changes g(x,t) 
(from the time-domain analog of Eq. 
6, written for each x) of local con- 
ductance per unit length G(x,t), and 
taking Laplace transforms in Eq. 7, 
one finds that the small-signal transfer 
function relating input intensity 
changes to total conductance changes 
is 

gT(S) 

i(s) 

C f G(x) s++a + dO(X) 

b"" 
b 

f Go(x)dx 
0 

where C is constant and Go(x) [also 
a function of Io(x)] is the steady con- 
ductance per unit length defined by 
Eqs. 4 and 5. With this prediction of 
the small-signal dynamics, we are now 
in a position to see what efficacy dis- 
tribution [here, Io(x)] over the dendrite 
enables Eq. 8 to describe the data of 
Fig. 4. 

Determination of the Distribution 

To discuss the shape of a spatial 
intensity distribution Io(x) which 
would suffice for the Limulus fre- 
quency response, we define a dimen- 
sionless function ~(x), a spatial "ef- 
ficacy" function, so that Io(x) = 
Io(x), where Io is the peak or entrant 
steady light flux [that is, .(0) = 1] 
upon which the small perturbations are 
imposed. 

The formal similarity of Eq. 8 and 
Eq. 2, the frequency-domain equivalent 
of von Schweidler's equation, now per- 
mits straightforward calculation (46) of 
t(x) such that the Limulus-eye gen- 
erator-potential dynamics of Fig. 4 are 
accounted for. The correspondence 
requires that k - 0.27, a -0.006 sec-1, 
vl0- 3 sec-1, and a choice of the ratio 
(O)/M(b) on the order of 103 or 

104. The corresponding solution for 
(x) is shown (solid line) in Fig. 7. 

That this t(x), used to determine Io(x) 
in Eq. 8, produces an excellent descrip- 
tion of the generator-potential dynam- 
ics is shown in Fig. 4 (solid line). In 
order to emphasize the relative inade- 
quacy of a single first-order "linear 
lead" network, invoked in other studies 
of the low-frequency dynamics, we 
include the gain and phase (coarse 
dashed lines) for such a process in 
Fig. 4. 

Range Compression in the 

Steady State 

From Rushton's original suggestion 
that the adapting bumps might underlie 
the Weber-Fechner or logarithmic be- 
havior of the Limulus ommatidium, 
and from our specific formulation of 
one type of ERPR process (Fig. 5), 
one can intuit that such a process will 
map a wide range of input intensity 
onto a restricted range of output-that 
is, perform nonlinear range compres- 
sion. 

Thus far we have treated only the 
nearly linear response of the multiple- 
ERPR process to small perturbations 
about a steady level of input light in- 
tensity. Now, however, we shall con- 
sider the steady conductance changes 
produced by this nonlinear process as 
input intensity Io is varied over a wide 
range. The total steady-state conduct- 
ance change in our formulation is 

OT(1o) = C1 -, +o-~( dx 
ocf dlo ( x) d (9) 

where C1 is constant and the integrand 
represents the local conductances per 
unit length of Eqs. 4 and 5, which 
vary hyperbolically with local intensity 
Io0(x). First consider the case in which 
~(x) is exponential; that is, ~(x) = 
e-". If ,P is large enough (that is, if 
the intensity Io(b) reaching the proxi- 
mal, most shielded-or least responsive 
-sites of the receptor is small with re- 
spect to a/v for the entire range of 
input intensities Io considered), then 
the solution of Eq. 9 is 

GT(IO) C210og +- (10) 

where C2 is a constant (47). This 
familiar function, plotted in Fig. 8 as 
the solid line, has been used empiri- 
cally by Rushton and others (48) 
to characterize quantitatively the static 
range compression measured in Limulus 
and other photoreceptors. In this 
function GT varies nearly linearly 
with Io at low intensities, and near o 
a/v there is a transition to logarithmic 
transduction of higher intensities, which 
is of course the Weber-Fechner rela- 
tionship. 

The specific form of Eq. 10 demands 
special comment: Because one cannot 
take the logarithm of an "intensity" 
but only of a dimensionless number, 
some constant with the dimensions of 
(intensity)-1 must appear before 1o in 
Eq. 10. In the empirical formulas (48) 
this assumes the form 1/ld, where Ia 

167 



is called a "dark light," an "Eigengrau," 
or a threshold reflecting a particular 
signal-to-noise ratio. In our simple ex- 
ample of distributed phototransduction 
in Limulus, "Id" arises physically as 
a/v (with the units of intensity, cm-2 
sec- 1), the ratio of the transduction 
restoration rate to the effective capture 
cross section of ERPR sites for 
photons. 

The solution of Eq. 9 for the steady- 
state response obtained if one uses the 
actual 4(x), in Fig. 7, derived from 
the low-frequency response data of 
Fig. 4, is also shown in Fig. 8 (solid 
circles). It differs very little from the 
log(1 + vlo/a) behavior over five 
decades of intensity, and in fact satu- 
rates appropriately whereas Eq. 10 
does not. 

Experimental measurements of 
"steady-state" conductance as a func- 
tion of light intensity for the Limulus 
eccentric cell, as well as of "steady- 
state" generator potential and discharge 
rate in the axon, are available (31, 33, 
36, 49) and all of these show several 
decades of range compression. Such 
data could be fitted roughly to or com- 
pared in detail with the functions and 
parameters of Fig. 8, suitably convert- 

ing (33) from conductance to gener- 
ator potential where indicated. 

We have three reasons for not mak- 

ing this comparison. First, all earlier 
experimental measurements of the 
"steady state" of which we are aware 
define "steady state" as the response 
obtained near the end of a 10- or 20- 
second flash of light, usually applied 
to the dark-adapted, excised eye. 
However, our small-signal dynamic 
analysis (Figs. 1, 2, and 4), on which 
the present formulation is based, was 
done with the eye in situ (50) and 

well-adapted to the intensity /o-stable 
discharge rates (+ 20 percent or bet- 
ter) were obtained for periods of 30 
to 90 minutes. To try to relate these 
actual steady states to the 10- to 20- 
second flash response usually studied, 
we repeated the large-step flash experi- 
ment; after a tendency to plateau in 
the region of 5 to 10 seconds, discharge 
rates declined steadily in the period 
10 to 100 seconds, toward the main- 
tained steady state at frequencies one- 
half to one-third those of the plateau. 
We cannot rule out, therefore, the 
possibility that the response near 5 to 
15 seconds following large steps may 
be influenced by the dynamic interplay 
of several nonlinear mechanisms of 
transient adaptation. 
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Second, Barlow and Kaplan (51) 
have recently shown that the 5- to 10- 
second response (which they termed 
"steady state") plotted against intensity 
of a 10-second flash is entirely differ- 
ent in excised eyes from that measured 
with the eye in situ. Third, as we have 
made clear (46), our predictions of 
the effects of large changes in o0 may 
suffer from our neglect here of such 
effects as pigment migration and 
bleaching. 

We do, however, have enough in- 
formation to inquire whether a region of 
the response predicted in Fig. 8 is com- 
patible with the intensity dependence of 
the steady-state firing rates of the cells 
for which the dynamics in Fig. 4 were 
measured. To establish the approxi- 
mate position on the "range-compres- 
sion curve" of these firing rates, two of 
these cells were adapted for at least 30 
minutes to intensities 1 and 2 log 
units, respectively, below the standard 
intensity level for the measurements of 
frequency response in Fig. 4 (10). 
Since we have already fixed the values 
of vIo and a for the standard level in 
order to fit the frequency response in 
Fig. 4 (that is, vlo/la = 3/0.006 = 
500), the calculated steady response 
in Fig. 8 at the dimensionless intensity 
vlo/a = 500 must correspond to the 
average firing rate (in this case, 12 
impulses per second) for these cells at 
the standard intensity. With the two 
ordinates in Fig. 8 chosen in this way, 
the measured discharge rates (open 
triangles and circles) plotted against 
intensity conform approximately to the 
predicted variation (solid circles) of 
the steady conductance in this range. 
This test would not be highly sensitive 
to a bad theory, particularly if vl0/a 
for Fig. 4 were to have fallen below 
500. Higher values, though, would 
produce a mismatch of the slopes. We 
claim only compatibility of the dy- 
namic response at vlo/a = 500 with 
the steady-state predictions in this re- 
gion. 

Because we have been forced to 
choose vIo = 3 sec-1 at the illumina- 
tion level of the experiments in Fig. 4, 
knowledge of the photon flux I0 would 
serve to fix v. Our standard level of 
illumination (10) corresponded to a 
corneal flux on the order of 3 X 1014 
photons (555 nm) cm-2 sec-1. If this 
were taken as the entrant flux 1o at the 
tip of the rhabdomere, the correspond- 
ing value of the effective absorption 
cross section of a "site" v would be 
about 100 A2. Although there is room 

for considerable rationalization in either 
direction, this value has at least the 
distinction of lying between that for 
the projected geometrical area of the 
rhodopsin molecule (52) and that for 
the capture cross section implied by 
the molar extinction for rhodopsin 
(53). 

Finally, the "backward calculation" 
used (46) to derive e(x) from the 
dynamic response in Eq. 8 can be ap- 
plied to Eq. 9 so that steady-state re- 
sponses of receptors, whether they 
obey a power law, or are logarithmic, 
or even nearly hyperbolic, can be em- 
ployed to derive corresponding candi- 
date distributions of local efficacy. For 
example, it is easily shown that local 
hyperbolic transducers with response 
of the form 1/ (I + M), if M is distrib- 
uted and the local contributions are 
weighted as M7-', produce in the ag- 
gregate the power-law response 1k 
which Stevens ;(7) has discussed. Al- 
ternatively, if I were considered to be 
distributed-as in our present example 
-each measured response characteristic 
would define a corresponding efficacy 
function 4(x). 

Plausibility, Testability, and Generality 

We have shown that one can account 
for both sk dynamics at one average 
intensity and nearly logarithmic statics 
over several decades of intensity with 
a single distributed efficacy function 
4(x). As one can infer from Fig. 7, 
the flattening of the required 4(x) at 
high values of efficacy [as compared 
with an exponential 4(x)] might be 
expected in a dioptric apparatus where 
focusing and maximum bleaching oc- 
cur in the most sensitive or active re- 
gion of the rhabdome; but such ra- 
tionalizations are probably premature. 
Rather, the general features of 4(x) 
in Fig. 7 suggest that one might search 
in the Limulus eye and other receptors 
for sufficient equivalent nonuniformity 
of I(x), v, and a-or for nonuniform- 
ity of alternative distributed phenom- 
ena in the operation of the receptor. 

The experiments of Hamdorf and 
his co-workers (28, 29) on local adap- 
tation within single visual cells are of 
interest in this regard. Hamdorf's (29) 
demonstration of relatively uniform 
local sensitivity along the dipteran 
rhabdomere, as measured by the early 
peak response of the dark-adapted eye 
to flashes, particularly if extended to 
the small-signal sensitivity in various 
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light-adapted states, could exclude the 
possibility that the effective values of 
v and a are strongly nonuniform over 
the dipteran receptor. Moreover, com- 
parison of these response character- 
istics under local and normal illumina- 
tion could exclude nonuniformity of the 
effective photon flux by scattering, ab- 
sorption, and refraction-although not 
necessarily nonuniformity resulting from 
"nodal effects" on the order of the 
wavelength of the light. 

In a sense, the greater the efficacy 
range required to describe the dis- 
tributed effects, the less plausible is the 
approach. It should be clear, however, 
that intensity has been used in this 
example to represent the nonuniformity 
due to all parameters; if v and I were 
to covary (effective absorption being 
matched to the regions of highest in- 
tensity in the rhabdome), then varia- 
tion by a factor of 32 in each of the two 
variables might suffice for the ~(b) = 
0.001 condition discussed above. If a 
or v were assumed to vary we would, 
of course, formulate Eq. 8 somewhat 
differently to describe the fractional- 
order response. 

We stress, however, that even with- 
out nonuniformity of v, a, or I, there 
remain alternatives for which the dis- 
tributed-efficacy methods apply di- 
rectly. Hamdorf (54) has pointed out 
that one plausible contribution to range 
compression lies in spatial occlusion 
effects, whereby photon absorptions 
close together in both time and space 
in the rhodopsin array may produce 
less effect than similar events more re- 
mote from one another. This is in a 
sense a generalization of the "compart- 
ment" notion of Wald et al. (55) and 
is analogous to allowing our hypo- 
thetical "site-to-rhodopsin ratio" to be- 

come a critical variable-treating spa- 
tial occlusion rather than the temporal 
occlusion in local sites we have stressed 
here. The expected efficacy of any 
photon capture then depends upon its 
expected separation in space from 
other contemporary captures, so that 
the nonuniformity over which one inte- 
grates is the distribution of such spac- 
ings in a small interval of time. In the 
simplest, one-dimensional example, 
such spacings are distributed expo- 
nentially (the Poisson process is con- 
sidered in space rather than in time), 
and the unknown function in Ham- 
dorf's counterpart of Eq. 9 would be- 
come the local occlusion effect versus 
spacing of captures. The methods of 
solution developed here would then 
apply to the prediction of particular 
spatial occlusion functions that can ac- 
count for given receptor responses ver- 
sus light intensity. More generally, one 
would treat spatial and temporal oc- 
clusion together; the fact that both 
may involve distributed effects is made 
particularly clear by Hamdorf's sugges- 
tion. 

The "antidromic illumination" and 
other novel optical techniques of 
Kirschfeld (4) and Franceschini (5), 
particularly their recent measurements 
in vivo of the statics and dynamics of 
migration of screening pigments in in- 
dividual receptors of dipterans, under- 
line a possible further dimension of the 
distributed approach. Pigment migra- 
tion can be rapid enough to provide 
high-pass-filter effects analogous in 
principle to those in our adapting- 
bump example. Extending the analogy 
to our distributed formulation, one can 
search for spatial nonuniformity both 
of screening pigment and of the fac- 
tors determining its rate of migration. 

The Vertebrate Retina 

Since the old photochemical expla- 
nations of adaptation were set aside 
(56), a remarkable fortress of psy- 
chophysical evidence (57) has accu- 
mulated, supporting the idea that the 
extensive visual adaptation that occurs 
with fixed pupil size, and before ap- 
preciable pigment is bleached, is not 
to be sought in the rods and cones- 
but rather in cells of higher order. 
Alpern et al. (58) have demonstrated 
that certain signals from rods and 
cones (those which interact somewhere 
in the visual system to produce meta- 
contrast) indeed appear to show sev- 
eral decades of near-linearity in flash 
intensity. 

Rushton (59) and Hodgkin (quoted 
in 59) have shown how the complexity 
of light adaptation as usually measured 
can be given a unified description; it is 
assumed that rod signals are pooled in 
a segment of "transmission line" sim- 
ilar to that discussed by Fuortes and 
Hodgkin (60). The output of the line 
is fed back to increase the shunt con- 
ductance of the line. If rod signals 
representing the rate of photon capture 
enter the line and rod signals repre- 
senting the fraction of rhodopsin 
bleached add to the output and hence 
also to the feedback, then the output 
of the line may behave like subjective 
brightness. 

The critical factor producing range 
compression in the formal Fuortes- 
Hodgkin scheme is the feedback, which 
progressively shunts the signals, reduc- 
ing the gain of the system as the output 
increases (61). The same effect en- 
hances high-frequency response in their 
explanation (60) of Limulus eye. As 
Fuortes and Hodgkin point out, the 

/ ̂Fig. 8. Steady-state response (calculated conductance change) of 
1.0 -* the light-adapted Limulus eccentric cell (solid circles), predicted 

u) .^ *directly from the distributed formulation derived from the small- 
? .8 - /-b x EX)A j -o signal dynamics in Fig. 4. Pigment migration and bleaching are D3' ClJ I Q dx .15 c intentionally ignored in order to show that the "distributed adapt- 

.6 t oc+ VIo, x) , ing-bump" hypothesis can produce a range of nearly logarithmic 
. .6 m t a) behavior in the steady state. The function log(l + vlo/a) (solid 

c ^*, , o 10 ._ line), which the distributed model predicts if spatial efficacy is 
.o 4 \ * 

' 
-. exponential, and its asymptote (fine dotted line) are shown for 

c . r) *C.( comparison. Open triangles and circles: steady-state firing rates 
.? o \ .,:> , In (1 iml ̂ o ) 5 (_) (maintained ? 20 percent for at least 30 minutes) at different 

LL .2 C2 [og ' + o. intensities for two (all available data) of the six cells with fre- 
0* yE quency response shown in Fig. 4. The high-intensity values are 

II. * \--,i _-X -- those for which the Fig. 4 frequency response was measured; 
-1 0 1 2 3 4 5 since the dimensionless intensity vIo/a from the fit in Fig. 4 is 

(3/0.006) = 500, the predicted response at vio/a = 500 is 
Log ('0Io/ A) matched to the average measured discharge rate at this level 

(12 impulses per second) by choice of the scale at the right. Axon discharge rate is expected to be linear in generator potential; the nonlinear transformation from conductance to generator po- tential has been neglected here since only a small range of moderate depolarization is implied by these discharge rates. 
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hypothetical variable fed back in 
Limulus apparently cannot be gener- 
ator potential itself because changing 
this artificially does not alter the mea- 
sured conductance. 

The nonuniform-efficacy mechanism 
for range compression, which we have 
developed here, is distinct from the 

Fuortes-Hodgkin feedback scheme; one 
might, for example, hypothesize dis- 
tributed inputs to Rushton's "pool" in 
such a way that von Schweidler's algo- 
rithm applies as in our Limulus exam- 
ple. A detailed formulation seems pre- 
mature, but we note in its favor (i) 
that no hypothetical feedback is in- 
voked, (ii) nonintegral-order dynamics 
are measured in cat ganglion cells 
(Fig. 2) (62), and (iii) that although 
we have treated quantitatively only the 
low-frequency and static behavior in 
our Limulus example, other inherent 
features of the distributed adapting- 
bump model make it an attractive alter- 
native. These other features include 
enhanced high-frequency response with 
increased background intensity (46), 
and asymmetry (of Eqs. 4 and 5) in 
the proper sense-adaptation to light is 
much more rapid than that to dark. 

In contrast to the above "nonre- 
ceptor" or "psychophysical" view of 
adaptation, Boynton and Whitten (.63) 
find that the late receptor potential- 
thought to represent the signals to sec- 
ond-order cells-of retinal cones in the 
macaque monkey exhibits sufficient 
adaptation to account for a major por- 
tion of the human adaptation phenom- 
ena observed psychophysically in the 
same experimental apparatus. As they 
point out, the adaptation prior to 
bleaching can be understood to arise 
from the saturating power-law (k- 
0.7) response of the cones to light in- 
tensity. This amounts to range com- 
pression in the sense of our Fig. 8, 
and, as mentioned previously, a sum- 
mation over local hyperbolic processes 
can produce such behavior in several 
ways. Each has heuristic physical im- 
plications; for example, if it were I 
that varied appreciably, then the over- 
all bleaching kinetics could not be pre- 
cisely hyperbolic but would be deter- 
mined by an integral over the cell 
(28) similar to that for the response 
itself (64). Alternatively, the distribu- 
tion of efficacy might apply over the 
several thousand cones which con- 
tribute to the late receptor potential 
measurement. 

Boynton and Whitten also find that 
the late receptor potential shows a 
range of nearly linear response for 
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stimuli superimposed upon a given 
background intensity (63). The adapt- 
ing-bump formulation behaves in this 
way, at least for small stimuli which 
are brief with respect to bump adapta- 
tion rate. It is here especially clear that 
the dynamics can be critical, and that 
arguments based on steady-state con- 
siderations, when applied to such data 
(as well as to psychophysical data) in 
the absence both of hypotheses about 
the dynamics and of consideration of 
the durations of the various test flashes, 
can be at best preliminary. 

Other Receptors 

As a trial explanation of the frac- 
tional-order frequency response of 
crustacean slowly adapting stretch re- 
ceptors (Figs. 1 and 2) (9, 16) con- 
sider for the moment that local strain 
produces local conductance changes 
(65) in the long dendrites [compare 
the shorter dendrites in the rapidly 
adapting stretch receptor (66)] aligned 
with the supporting muscle fibers. If 
these local processes adapt with strain- 
dependent rate constants, and strain is 
nonuniform along the dendrite [as is 
in fact the case for interfilament shear 
in the analogous distributed connec- 
tions between an I filament with one 
free end and a strained A filament in 
insect muscle (6)], then one has a 
complete analogy with our Limulus 
hypothesis for the measured noninte- 
gral-order dynamics. The idea can be 
tested with localized mechanical stim- 
ulation. 

In chemoreception by insect anten- 
nal receptors, the dependence of the 
steady-state response upon stimulus con- 
centration can be distinctly nonhyper- 
bolic (67). Distributed effects analo- 
gous to those treated here, via non- 
uniform distributions of both odor sub- 
stance (68) and pore channels (69) 
over the sensory surface have recently 
been identified, and offer testable bases 
for the characteristic responses of these 
receptors (70). 

Summary 

Dynamic description of most recep- 
tors, even in their near-linear ranges, 
has not led to understanding of the 
underlying physical events-in many 
instances because their curious trans- 
fer functions are not found in the 
usual repertoire of integral-order con- 
trol-system analysis. We have described 

some methods, borrowed from other 
fields, which allow one to map any 
linear frequency response onto a puta- 
tive weighting over an ensemble of 
simpler relaxation processes. One can 
then ask whether the resultant weight- 
ing of such processes suggests a cor- 
responding plausible distribution of 
values for an appropriate physical vari- 
able within the sensory transducer. 

To illustrate this approach, we have 
chosen the fractional-order low-fre- 
quency response of Limulus lateral-eye 
photoreceptors. We show first that the 
current "adapting-bump" hypothesis 
for the generator potential can be for- 
mulated in terms of local first-order re- 
laxation processes in which local light 
flux, the cross section of rhodopsin for 
photon capture, and restoration rate of 
local conductance-changing capability 
play specific roles. A representative 
spatial distribution for one of these pa- 
rameters, which just accounts for the 
low-frequency response of the receptor, 
is then derived and its relation to cellu- 
lar properties and recent experiments is 
examined. 

Finally, we show that for such a sys- 
tem, nonintegral-order dynamics are 
equivalent to nonhyperbolic statics, 
and that the efficacy distribution de- 
rived to account for the small-signal 
dynamics in fact predicts several dec- 
ades of near-logarithmic response in 
the steady state. 

Encouraged by the result that one 
plausible proposal can account approx- 
imately for both the low-frequency dy- 
namics (the transfer function s7c) and 
the range-compressing statics (the 
Weber-Fechner relationship) measured 
in this photoreceptor, we have de- 
scribed some formally similar applica- 
tions of these distributed effects to the 
vertebrate retina and to analogous 
properties of mechanoreceptors and 
chemoreceptors. 

Conclusion 

There are at least three reasons for 
considering further the role of dis- 
tributed relaxation processes in sensory 
adaptation. First, one does measure 
both nonintegral-order dynamics and 
range compression in most receptors. 
Moreover, the nonuniformities of local 
"efficacy"-to which we have shown 
these characteristics can be related- 
must in fact occur to some extent. 
Finally, even if our several specific 
proposals should turn out to be experi- 
mentally excludable, these methods of 
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treating distributed phenomena apply 
directly to alternative formulations and 
to other levels of the sensory transduc- 
tion process. We hope that mathemati- 
cal experiments, like those we have 
outlined here, will specify these rela- 
tionships so that decisive physiological 
experiments can be done. 
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completed. This exercise, undertaken 
by the Royal Norwegian Council for 
Scientific and Industrial Research 
(NTNF), illustrates many of the prob- 
lems and opportunities of such plan- 
ning in a small country (Norway's pop- 
ulation in 1970 was 3.9 million). 

Norway's situation regarding science 
and technology is similar to that of 
many other countries. Norway has lim- 
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ited scientific and technical manpower 
resources-some 9000 degree-holders 
primarily engaged in research and de- 

velopment (R & D)-yet it must com- 

pete in its major export markets with 

large, technologically advanced coun- 
tries. Norway's industrial structure con- 
tains few large companies, but many 
small ones. Consequently, government 
and private industry must cooperatively 
support R&D in many fields. Even so, 
Norway must, of necessity, import 
most of its scientific and technological 
knowledge. Since its natural resources 
are already being extensively ex- 

ploited-except for recently discovered 
hydrocarbons in the North Sea-Nor- 
way must depend on knowledge indus- 
tries for future economic growth. Like 
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many other countries, Norway faces 
the modern challenges of continued 
economic growth, maintenance of a 
good quality of life in its cities, and 
enlightened development of its exten- 
sive rural areas. Sophisticated applica- 
tion of science and technology will be 
necessary to attack these problems. 
Norway's approaches and experiences 
could be of interest to many. 
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Structure of Norwegian 

Science and Technology 

Total expenditures for R&D in 
Norway were about 1100 million kro- 
ner in 1971, or approximately 1.2 per- 
cent of the gross national product. 
Table 1 shows how expenditures for 
R & D in Norway are distributed among 
sources of funds and performing in- 
stitutions. 

To stimulate and coordinate R & D 
in nonmilitary fields, there are three 
research councils: the Norwegian 
Council for Science and the Humani- 
ties, the Norwegian Agricultural Re- 
search Council, and the NTNF. Their 
activities cover virtually all subject 
areas except defense. The councils ad- 
vise the ministries concerned with their 

respective fields, supervise certain re- 
search institutes, finance research proj- 
ects and research capital needs, provide 
scholarships, and advise on education, 
training, and recruitment of scientific 
and technical personnel (1). 
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