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Vertebrate photoreceptor membranes 
are lipoprotein bilayers which are com- 
posed primarily of rhodopsin and phos- 
pholipids. The major fatty acid of the 
phospholipids from rat rods is docosa- 
hexaenoic acid, 22:603 (1). Rats can- 
not synthesize either o3 or 06 fatty 
acids; precursors are required from 
dietary sources. Since the photoreceptor 
membranes of normal rat rods turn over 
every 10 days (2), it was expected that 
the fatty acid composition of photo- 
receptor membranes could be altered by 
raising weanling rats on diets which 
lack )3 or 06 precursors. However, this 
result was not observed. In fact, nearly 
normal fatty acid distributions were ob- 
served in whole retinas (3) and photo- 
receptor membranes (4) of rats which 
had been maintained for as long as sev- 
eral months on fat-free diets. In addi- 
tion, Futterman et al. (3) reported that 
rats on fat-free diets had normal elec- 
troretinograms (ERG's) with the pos- 
sible exception of an increased thresh- 
old for the a-wave. 

We raised a second generation of 
rats on a modified fat-free diet. Fatty 
acid distributions of photoreceptor 
membranes from these animals were 
altered substantially, and ERG's were 
used to test visual function. 

Weanling 3-week-old female albino 
rats (Texas Inbred, Houston) were fed 
a fat-free (Nutritional Biochemicals) 
diet for 12 weeks. Females from this 
group were then fed the fat-free diet 
supplemented with 0.85 percent by 
weight of 18:206 to facilitate breeding 
and lactation. The second-generation 
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offspring were weaned to a completely 
fat-free diet at 3 weeks. Test animals, 
both male and female, came from this 
second generation after 10 weeks or 
more on a fat-free diet. Control ani- 
mals of the same age were raised on 
lab chow. Rod outer segments from 
control and test animals were purified 
by sucrose floatation procedures. Details 
of the phospholipid and fatty acid 
analyses are described elsewhere (4). 
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second generation after 10 weeks or 
more on a fat-free diet. Control ani- 
mals of the same age were raised on 
lab chow. Rod outer segments from 
control and test animals were purified 
by sucrose floatation procedures. Details 
of the phospholipid and fatty acid 
analyses are described elsewhere (4). 

Phospholipid classes were similar in 
membranes from control and test ani- 
mals. However, fatty acid compositions 
of the phospholipid classes were al- 
tered by the fat-free diet. The fatty acid 
composition of a representative phos- 
pholipid class, phosphatidyl ethanola- 
mine, is shown in Table 1. The 
principal membrane modifications in the 
test animals were a specific reduction in 
22:6X3, which is the major fatty acid 
of normal membranes, and an increase 
in 20:3o,9, 22:5w6, and 18:0 DMA, 
which do not occur in measurable 
amounts in normal membranes. [Ac- 
cumulation of 20:3 09 is characteristic 
of essential fatty acid deficiency (5). The 
precursor of 22:50,6 is 18:20)6 which 
was available for 3 weeks in the milk 
of the mothers of the second genera- 
tion.] Comparison of data from control 
animals and test animals transferred to 
a lab chow diet for 30 days indicates 
almost complete reversibility of the ef- 
fects of fatty acid deficiency. 

ERG's were used to test the electrical 
function of eyes with modified photo- 
receptor membranes. The ERG's were 
measured with usual recording proce- 
dures at a bandpass of 0.03 to 300 hertz. 
The corneal ERG electrode was a cir- 
cular loop 4 mm in diameter, made 
from 0.25-mm tungsten wire, which 
was rigidly mounted onto a 2.5-mm 
fiber optic. The fiber optic was centered 
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Table 1. The fatty acid composition of a representative phospholipid class, phosphatidyl 
ethanolamine. Data for controls were taken from rod outer segments of several groups of con- 
trol rats. Data for test animals were taken from rod outer segments of 20 eyes of rats on 
fat-free diet. Data in column 3 were taken from rod outer segments of 14 eyes of test rats 
after 30 days on control diet. DMA indicates a fatty aldehyde derived from plasmalogens. 
Small-sample noise limitations account for the 3.4 percent which could not be identified 
precisely in column 2, but individually each of these unidentified components contributed less 
than 1 percent. 

Fatty acid Controls Test animals Test animals fed 
species (mole percentages) control diet for 30 days 

14:0 0.5 
15:0 0.9 
16:0 DMA 1.9 
16:0 6.7 7.9 6.2 
17:0 0.7 
18:0 DMA 4.0 5.4 
18:0 33.9 33.9 30.5 
18:1 3.9 6.2 2.7 
18:2 0.2 0.2 
20:0 0.5 
20:1 0.2 
20:3w9 Trace 5.8 Trace 
20:4w6 8.1 5.2 5.6 
22:4w6 1.9 1.3 1.0 
22:5w6 10.4 0.8 
22:5w3 0.5 
22:603 45.2 19.0 45.3 
Unidentified 3.4 

Total 99.9 99.9 100.1 
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Membrane Fatty Acids Associated with the 

Electrical Response in Visual Excitation 

Abstract. The fatty acid composition of rat photoreceptor membranes was 
altered by dietary manipulation. A functional alteration was also observed in 
the component of the electroretinogram which is generated by the photoreceptors. 
A membrane fatty acid, docosahexaenoic acid, appears to be involved in the 
transduction process of visual excitation. 
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Fig. 1. Electroretinograms 
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samples from control and 
test animals were derived 
from a single a-wave popula- 
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animals were 5.8 ?0.4 nmole per 
gram of wet tissue and 5.6 ? 0.3 
nmole per gram of wet tissue, respec- 
tively (7). The shape of the absorption 
spectra and general bleaching charac- 
teristics were the same for rhodopsin 
from both groups of eyes. Third, the 
density and packing of rods appeared 
normal in the test animals, and the 
ultrastructure of rod outer segments 
from these animals was indistinguish- 
able from the ultrastructure of rod outer 
segments from control animals. Fourth, 
although fatty acid compositions of 
photoreceptor membranes from test ani- 
mals approached control values after 
they were fed a control diet for 30 days 
(see Table 1), a-wave amplitudes and 
a/b ratios were about midway between 
test and control values after 29 days 
on control diet. Thus, the time course 
of recovery may be slower for electri- 
cal function than for the fatty acid 
composition of the photoreceptor mem- 
branes. Finally, Landis, Dudley, and 
Anderson (8) have shown that turn- 
over and renewal of photoreceptor disks 
are modified in the first-generation ani- 
mals raised on a fat-free diet. Data are 
not yet available on disk renewal in 

second-generation animals. 
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