
nisms of membrane fusions has grown, 
it has become clearer that explanations 
of membrane fusions can start from dif- 
ferent models of membrane architecture 
(12). One of the fruitful results of such 
model building is that ideas will be gen- 
erated that can be tested experimentally, 
and this may help to explain the obser- 
vations reported here. 
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We have found that two normal in- 
termediates in bile acid synthesis, dihy- 
droxycoprostane (1) and trihydroxyco- 
prostane stimulate porphyrin formation 
in cultured liver cells by induction 
of 5-aminolevulinic acid synthetase 
(ALAS), the rate limiting enzyme for 
this biosynthetic pathway. These com- 
pounds are precursors in the formation 
of bile acids from cholesterol (2), and 
their rate of production in man is esti- 
mated to be 200 to 400 mg/day. Their 
accumulation in liver cells can there- 
fore be a potent endogenous stimulus 
for porphyrin overproduction in liver 
disease. 

Dihydroxycoprostane and trihydroxy- 
coprostane were prepared by electro- 
lytic reduction and condensation of iso- 
valeric acid with either chenodeoxy- 
cholic acid or cholic acid (3). The re- 
action mixture was fractionated by 
alumina chromatography and the final 
product was recrystallized from aqueous 
acetone (3). Other intermediates in bile 
acid synthesis such as 7a-hydroxycho- 
lesterol and 26-hydroxycholesterol were 
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prepared as described (4, 5). Related 
compounds were obtained from com- 
mercial sources and were either re- 
crystallized or purified by thin-layer 
chromatography prior to use. 

Chick embryo liver cells were grown 
in culture according to the method de- 
scribed by Granick (6). Briefly, livers 
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Fig. 1. Induction of porphyrin synthesis 
in liver cell culture by di- and trihydroxy- 
coprostanes (see text). 
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from 14- to 15-day chick embryos were 
minced, trypsinized, and suspended in 
Earle's basic salt solution. Aliquots of 
5 X 105 cells were added to glass vials, 
each of which contained a 16-mm cov- 
er slip. To each vial, 1 ml of Eagle's 
basal medium supplemented with amino 
acids and antibiotics was added, and 
the cells were grown at 37?C in 5 per- 
cent CO, in air for 24 hours. The 
medium was then changed, and addi- 
tions were made to the vials. The com- 
pounds to be tested were added to the 
cultures in 5 /I1 of propylene glycol, 
with at least four replicate vials at 
each dose. In each assay, controls in- 
cluded 10 to 15 vials to which 5 1tl of 
propylene glycol and 5 to 14 vials to 
which 20 ,ug of allylisopropylacetamide 
(AIA), a compound known to be a 
potent inducer of porphyrin formation, 
were added. After incubation for an 
additional 20 to 24 hours, the vials 
were frozen, and their contents were 
lyophilized. Porphyrins were extracted 
and quantified as described (7) in a 
spectrophotofluorimeter (Hitachi model 
MPF 2A), at an excitation wavelength 
of 400 nm and an emission wavelength 
of 650 nm. Coproporphyrin III was 
used as a standard (Fig. 1). 

Dihydroxycoprostane and trihydroxy- 
coprostane caused significant stimula- 
tion of porphyrin synthesis (Fig. 1). 
The effect was dose-related and consis- 
tent throughout the dose ranges studied. 
Dihydroxycoprostane always induced 
significantly more porphyrin synthesis 
than trihydroxycoprostane. Further de- 
lineation of the mechanism of copro- 
stane induction of porphyrin synthesis 
was obtained by studying the effect of 
hemin on this process (Fig. 1) and by 
directly determining the activity of 
mitochondrial ALAS in coprostane- 
treated 17-day-old chick embryos (8). 
Hemin completely suppressed the por- 
phyrinogenesis induced by dihydroxy- 
coprostane in cultures (Fig. 1), while a 
20-fold increase in hepatic ALAS ac- 
tivity was produced in vivo in the chick 
embryo. These findings, indicate that 
the coprostane compounds act on the 
porphyrin-heme pathway in a manner 
analogous to that of drugs, foreign 
chemicals, and neutral 5/3-steroid hor- 
mone metabolites (6, 8, 9). 

In contrast 7a-hydroxycholesterol and 
26-hydroxycholesterol, bile acid inter- 
mediates that do not have a 5/3 nucleus, 
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tion. Similarly, the dihydroxy- and tri- 
hydroxy-5/,-cholanoic acids and their 
taurine conjugates were also inactive in 
cell culture. Although the monohydroxy 
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Abstract. Dihydroxycoprostane and trihydroxycoprostane, intermediates in 
normal bile acid synthesis in the liver, enhanced the rate of porphyrin synthesis 
in cultured liver cells by induction of 8-aninolevulinate synthetase, the rate-limit- 
ing enzyme for this pathway. Other 5/3-cholestane derivatives and cholest-5-ene 
derivatives were ineffective. The selectivity of the induction may indicate that the 
above-mentioned coprostanes have a physiological role in porphyrin synthesis. 
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Fig. 2. Pathways for conversion of cholesterol to bile acids in man. The do 

indicate sites at which impairment of enzymatic activities would lead to acci 

of intermediates that induce hepatic porphyrin synthesis. 

bile acid lithocholic acid was slightly 
active in high concentration, no increase 

in porphyrin formation was induced by 

3,-hydroxy-5-cholenoic acid, a deriva- 

tive of cholesterol found in rat and 

hamster bile (10) but not yet identified 

in human bile (5). Thus the stimula- 

tion of prophyrin synthesis by com- 

pounds in the metabolic pathway for 

bile acid synthesis from cholesterol ap- 

pears confined to relatively few 5/ neu- 

tral intermediates, such as the copro- 
stane compounds described. 

The rates of hepatic synthesis of di- 

hydroxycoprostane and trihydroxycop- 
rostane from cholesterol exceed great- 

ly the production of 5/-steroid metab- 

lites derived from adrenal and gonadal 
hormones. However, in normal man 

both bile acid intermediates rapidly un- 

dergo side chain oxidation to form 

chenodeoxycholic and cholic acids (Fig. 

2). The normal rate of production of 

intermediates can be estimated to be 

0.17 atg per gram of liver per minute. 

This value is obtained by assuming a 

constant rate of bile acid synthesis of 

400 mg per 24 hours per 1500 g of 

liver in a 70-kg man. Actually, greater 
rates probably occur at certain times 

during the day since there is evidence 

for a diurnal variation in bile acid pro- 
duction (2). In our studies a concentra- 

tion of 5 tg of dihydroxycoprostane per 
milliliter of culture fluid was found to 

induce porphyrin synthesis. Under ab- 

normal circumstances that cause a 

block in intermediate metabolism in 

man, this amount of coprostane could 

accumulate per gram of liver within a 

very short time. 
It is speculative to extrapolate these 

findings with avian embryonic hepato- 
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cytes to liver disease in man. I 

the phenomenon of porphyl 
production in acquired liver 
such as cirrhosis (11) is well re 

although unexplained. It is pos 
the mechanism of this pheno 
related to the alterations knowr 
in bile acid metabolism. Thu, 
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* A statistically significant increase 
found only in tubes containing th{ 
centrations. 

acid pool size is not known, but is 
< coIi related to a change in synthesis rate 

rather than to an increase in fecal loss 

(12). A reduction in the rate of bile 
acid synthesis can occur either because 

olic Acid less cholesterol enters the metabolic 

pathway, or because intermediates in 
bile acid synthesis accumulate as a re- 

COOH suit of a reduction in enzymatic activity 
necessary for primary bile acid syn- 
thesis. In some instances this enzymatic 
block may occur during side chain oxi- 
dation (Fig. 2) and cause increases of 

dihydroxycoprostane and trihydroxyco- 
prostane in the tissue. Unless these in- 
termediates undergo an unidentified al- 
ternate pathway of metabolism and ex- 
cretion, their accumulation in liver cells 

uble bars could lead to induction of ALAS and 
umulation mulation 

overproduction of porphyrins. The 
close relation of porphyrin-heme bio- 

synthesis to the cytochrome P-450- 

However, mixed function oxidase system also 

rin over- raises the possibility that cholesterol 

disorders derivatives such as the coprostanes 
cognized, significantly influence this critical detoxi- 

sible that fication mechanism for drugs, carcino- 

menon is gens, and other chemicals in the liver. 
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