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Now, considering the deductions 
made in (2)-on the basis of physical 
reasoning and the results of numerical 
model experiments which definitely 
indicate an effect of intensification by 
seeding-I assign the pre-Debbie prob- 
abilities 

P'(Hi) = .0227 
P'(H,2) .7500 (5) 
P'(H3) .2273 

whereas in Howard et al. the corre- 
sponding set is 

P(H1) - .15 
P(H2) .75 
P(Hs) - .10 

Hence, the pre-Debbie odds that seeding 
has no effect are the same in set 5 
as in Howard et al. However, P'(H3) 
is taken to be one order of magnitude 
larger than P'(H1) to reflect that, if 
seeding affects the intensity at all, an 
increase of the maximum wind is 
expected. 

When sets 4 and 5 are introduced 
in Bayes' equation the posterior pro- 
babilities become 

P'(H1) = .0647 
P'(H2)= .8131 (6) 
P'(H:,) =.1222 

whereas in Howard et al. 

P(H1) =.49 
P(H,) .49 
P(13) -=.02 

Set 6 implies that, since the Debbie 
results, the odds are about 4 to 1 that 
seeding has no effect, and if seeding 
does have an effect the odds are 2 to 
1 for wind intensification rather than 
wind reduction. 

Finally, I can compute the proba- 
bility distribution on wind speed [from 
Eqs. 1, 2, 3, and 6 above and equation 
4 in (I)]. The difference in probability 
between the seeding and not-seeding 
alternatives is so small that it is hard 
to show it in a plot of the comple- 
mentary cumulative distribution func- 
tions of those two alternatives. Instead, 
I plot this function for the not-seeding 
alternative and the difference (the func- 
tion for seeding minus the function 
for not-seeding) in Fig. 1. I find that 
the probability for intensification (wind 
speed more than 100 percent of the 
initial wind speed) if a hurricane is 
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seeded is .511; if the hurricane is not 
seeded the probability is .500 [in (1) 
these values are .36 and .50, respec- 
tively]. The probability of intensification 
by 10 percent or more is .278 if a 
hurricane is seeded and .261 if it is 
not seeded [.18 and .26, respectively, 
in (1)]. 

Furthermore, for any particular wind 
speed larger than 88 percent of its 
initial value, the probability that this 
speed will be exceeded is greater if the 
hurricane is seeded than if it is not 
seeded. For wind speeds less than 88 
percent of their initial values the situa- 
tion is reversed; however, the difference 
in this interval is much smaller in 
magnitude than it is in the former 
interval. 

Since the analysis given above may 
be considered to be as soundly based 
as that in (1), it shows that the avail- 
able data are too sparse to yield a 
statistical basis for conclusive state- 
ments. I suggest that the method of 
statistical analysis (possibly somewhat 
modified) should be used to investigate 
the requirements on reliability and 
volume of results from model studies 
and field experiments in order to 
permit confident conclusions and rec- 
ommendations. 

HILDING SUNDQVIST 
Institute of Meteorology, University of 
Stockholm, Stockholn 19, Sweden 
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In the concluding section of our 
article we stated: "The results of a 
decision analysis depend on the infor- 

mation available at the time it is per- 
formed. Decision analysis should not 
be used to arrive at a static recom- 
mendation to be verified by further 
research, rather it should be used as a 
dynamic tool for making necessary de- 
cisions at any time." We are pleased 
that Sundqvist finds our analysis a 
useful format in which to present his 
views regarding the results of hurri- 
cane modification. He has succinctly 
summarized his opinion in the form 
of a prior probability distribution and 
then used the Debbie experimental re- 
sults to develop consequent probability 
distributions for the wind speed, both 
with and without seeding. His pre- 
Debbie probability assignment was that 
there was a 75 percent chance of no 
seeding effect, and that if there were 
an effect, the odds were 10 to 1 that 
it would be deleterious. The Debbie 
experiment is not sufficient to over- 
come this pessimistic prior probability 
distribution: a decision-maker who 
subscribed to Sundqvist's view would 
not wish to attempt operational hurri- 
cane seeding at this time. 

Our analysis was based on the best 
information we could obtain from U.S. 
hurricane modification experts. As de- 
cision analysts we cannot comment on 
Sundqvist's differing opinion, except to 
say that our information sources were 
aware of his work and did not sub- 
scribe to his views. Further dialogue 
between Sundqvist and the community 
of U.S. hurricane modification experts 
would be appropriate to determine 
whether the latter see any new reason 
to modify their judgments. 

RONALD A. HOWARD 

Departm;ent of Engineering-Economic 
Systems, Stanford University, 
Stanford, California 94305 

JAMES E. MATHESON 
D. WARNER NORTH 

Decision Analysis Group, 
Stanford Research Institute, 
Menlo Park, California 94025 
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Stable Limit Cycles in Prey-Predator Populations Stable Limit Cycles in Prey-Predator Populations 
In a recent report (1) May dis- 

cussed several mathematical models of 
prey-predator population interactions, 
all variants of the Kolmogorov model 
(2). May attributed to Kolmogorov 
the statement that this model possesses 
either a stable equilibrium point or a 
stable limit cycle (3). Kolmogorov 
(2) has remarked, however, that under 
his own hypotheses there may be sev- 
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either a stable equilibrium point or a 
stable limit cycle (3). Kolmogorov 
(2) has remarked, however, that under 
his own hypotheses there may be sev- 

eral possible configurations, one of 
which is an unstable equilibrium point 
that is surrounded by an uncount- 
able number of neutrally stable pe- 
riodic solutions (hence neither a stable 
equilibrium point nor a stable limit 
cycle). 

In the same report (1), May claimed 
that his interpretation of Kolmogorov's 
results holds under even more general 
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hypotheses. We show here that this as- 
sertion is incorrect. 

Let x denote the prey population 
size, y the predator population size, 
and g(x,y), h(x,y) their respective 
fractional (or per individual) growth 
rates. The dynamic equations describ- 
ing the interactions are 

dx 
dt = xg(x,y) dt y ,y 

dy = yhl(x,y) dt 

(la) 

(lb) 

These equations, where g and h satisfy 
Kolmogorov's hypotheses [equations 3 

through 9 in (1)], constitute the Kol- 

mogorov model. Here we assume that 
g and h are continuous in the closed 
first quadrant (x 0, y 0), have 
continuous partial derivatives in the in- 
terior of the first quadrant (x > 0, y > 
0), and satisfy the following hypoth- 
eses: 

c3cLlg dg Og 
y < O, x -^ + y y< O 
r)y 0x ay 

for x > 0, y > 0 

L 0, x- + y >0 ay ox ay 
for X > 0, y > 0 

In addition there exist A > 0, B>0, 
C > 0 such that 

g(0,y) > 0 for 0 y < A 
< 0 for y > A 

g(x,0) > 0 for 0 x < B 
< 0 for x > B 

h(x,0) < 0 for 0 x < C 
> 0 for x > C 

B>C 

We have assumed the above hypoth- 
eses rather than Kolmogorov's condi- 
tions or May's relaxed conditions [giv- 
en in reference 17 of (1)]. Kolmogo- 
rov's conditions, which are to hold in 
the closed quadrant (x 0, y 0), 
lead to the contradiction (Oh/0y) < 0 
and (Oh/Oy) > 0 on the positive y-axis. 
Furthermore, if Kolmogorov's condi- 
tions are satisfied for x > 0, y > 0, 
then our hypotheses will hold, and, in 

turn, if our hypotheses are met, then 

May's relaxed conditions will be satisfied 
for x > 0, y > 0. 

We now give an example which 
satisfies our hypotheses and has neither 
a stable equilibrium point nor a stable 
limit cycle, thereby disproving May's 
assertion. In Eqs. la and lb let 

h(x,y) = Xx - a., (2a) 

g(x,y) = a -- Xiy + c(x - Xe)p(x - xe) 

(p(y - ye) if 0 - x (2b) 

g(x,y) = a, - Xsy - (x - 
_)2 

if x > x (2c) 

1074 

oIE~i l ,1 (Xe,Ye) 

x=x 

Population x 

Fig. 1. All the periodic solutions of Eqs. 
la and lb for system 2 are contained in 
and on the boundary of the region R', 
where 6 < min[x,,ye] is a fixed number, 
and X is chosen so that R' will have an 
interior. 

where x, = (a,2/X2), y,, - (a1/X1), (al, 
a2, XA, X, > 0), c is a constant, and p 
is the continuously differentiable func- 
tion 

P(u) = (1 - )s when lul < 8 

p(u) = 0 when lul 8 

for the fixed positive number < 

min[xe,ye]. Define 

V(x,y) = X2(x - .e) - a2 log -- 

+ X(y - ye) --a log( ) 

and choose x to satisfy the two condi- 
tions j > xe + 8 and 

V(x,yO) > V(xC - 5, ye. - 5) 

This completes the description of sys- 
tem 2. 

It is a straightforward matter to 

verify that system 2 satisfies our hy- 
potheses when Icj is sufficiently 
small. The equilibrium point (xe,y0) is 
stable if c <0 and unstable if c> 0. 
On studying the behavior of (dV/dt) 
along solutions of system 2, one can 
show that, if c 0, all periodic solu- 
tions of system 2 are contained in a 
closed annular region R'. The outer 

boundary of R' is the solution of the 
Lotka-Volterra system (4), 

dx x x=(a -- xy) (3a) dt 

y -= y(2,x- a,) (3b) cit 

which is tangent to the line x=-x; the 
inner boundary of R' is the solution 
of system 3 which passes through the 

point (x, - 8, y, - 8) (see Fig. 1). Since 
in R' systems 2 and 3 coincide, and 
since all the solutions of system 3 are 

periodic (4) (hence none are stable or 

unstable), it follows that all periodic 

solutions of system 2 are neither stable 
nor unstable. 

We remark, finally, that our system 
2 need not be of any biological signifi- 
cance. The system was chosen merely 
to show that the dynamical Eqs. la and 
lb can admit a continuum of neutrally 
stable periodic solutions when our hy- 
potheses are the only requirements. 
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It is true that I could have been 
more meticulous, particularly in my 
footnote 17 in (1), and that, in addi- 
tion to stable equilibrium points and 
stable limit cycles, there can be excep- 
tional classes of (structurally unstable) 
neutrally stable periodic solutions. Al- 

though undoubtedly of some pedagogic 
and mathematical interest, such special 
neutrally stable periodic solutions are 

unlikely to be of biological significance. 
Albrecht et al. themselves make this 

point, and indeed their example is con- 
structed with nonanalytic functions, 
whose higher derivatives are discon- 
tinuous. 

The central fact remains that es- 

sentially all the explicit one predator- 
one prey models that have actually 
been propounded in the biological liter- 
ature exhibit either stable equilibrium 
point or stable limit cycle behavior as 
the biological parameters are varied. 
This is the result sketched in my re- 

port (1), and it has subsequently been 

developed in detail, with a variety of 

examples (2). The remark that phe- 
nomena with stable limit cycles are 

likely to be pervasive in natural 

predator-prey systems [and in many 
other contexts (3)] is unaffected by 
the comments of Albrecht et al. 

ROBERT M. MAY 
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