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Tubular Packing of Spheres 
Biological Fine Structi 

Protein monomers of viruses, flagella, and microtut 
form patterns like those of leaves of pis 

Ralph 0. Eri< 

High resolution electron microscopy, 
x-ray diffraction, and some other tech- 
niques are providing detailed informa- 
tion on the ultrastructure of a number 
of biological structures that are as- 
sembled from protein monomers. One 
class of such structures is cylindrical 
tubules, such as the protein coats of 
some viruses, flagella of bacteria such 
as Salmonella, and a variety of micro- 
tubules. Microtubules are found in the 
mitotic spindle of higher organisms, as 
supporting elements in many non- 
spherical cells, such as the heliozoan 
protozoa, and are also thought to play 
a part in the synthesis or assembly of 
other structural components of cells. 

There is little consistency in the geo- 
metric conventions which various au- 
thors have used in describing these 
structures, perhaps because the under- 
lying geometry has not been thoroughly 
understood. In most cases, the sym- 
metry of arrangement of the mono- 
mers into the larger structure is ob- 
viously helical. Therefore, some au- 
thors have given the pitch and diam- 
eter of certain evident helices, as is 
done in specifying a screw in practical 
mechanics. Others have centered their 
attention on the number of monomers 
which appear in a cross section, and 
spoken of 11-, 12- or 13-stranded fila- 

ments. It is understa 
conventions of crystall 
in describing the resu 
optical diffraction s 
structures. The descr 
tions may be related t 
mechanism of assemb 
bly of the structures. 
has been proposed th 
may be assembled b: 
of one or more prev 
protofilaments, and 
ences to four-start and 

To my naive eye, 
erty of these structures 
packing pattern of th< 
has also been the viev 
authors. The symmel 
packing in an extenc 
mentary, and is desc 
(1), for instance, as 
one of the possible te 
plane. While the cylir 
able surface, in that i 
into a plane, still a ne 
into symmetrical patte 
cal surface, since the 
be unbroken about t] 
The geometry of th 
been worked out exh 
son (2) as a part of 
study of phyllotaxis. 
Iterson's models, sp 
packing of spheres or 
cylinder, be used as 
scriptions of these 
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structural symmetry. The classical ter- 
minology of phyllotaxis, in particular 
the terms parastichy for any rank of 
subunits, and angular divergence from 
one subunit to the next, are as com- 

i,n 1pletely appropriate to ultrastrucural 
patterns as they are to the arrangement 

ure of leaves on the stem of a higher plant, or scales on a pine cone. 
In this article I review and extend 

Mules Iterson's (2) geometry in the restricted 
case of the arrangement of spheres, 

tnlts, whose centers lie on the surface of a 
circular cylinder, such that each sphere 

kson is in contact with six others. Probably 
because of the difficulty of calculating 
by successive approximation, Iterson 
tabulated only a few patterns. He chose 
examples corresponding to existing pat- 

andable that the terns of leaf arrangement in higher 
[ography are used plants, and it appears that other pat- 
ilts of x-ray and terns occur at the ultrastructural level. 
tudies of these Computer solutions of Iterson's equa- 
:iptive considera- tions are given here, together with 
to theories of the drawings of some patterns. Several 
ly and disassem- patterns displayed by submicroscopic 
For instance, it biological structures are analyzed in 

iat a microtubule these terms. 
y the coiling up 
iously assembled 
there are refer- Derivation of Equations 
I five-start helices. 
the salient prop- It will be useful first to consider 

s is the hexagonal symmetrical patterns of points on a 
e monomers; this cylindrical surface. In Fig. 1, a point 
v of several other set which is characterized by screw 
try of hexagonal symmetry is illustrated. The basic sym- 
led plane is ele- metry operation, congruence (3), or 
ribed by Coxeter isometry (1) is the screw displacement 
corresponding to or twist, which is the product of a ro- 

essellations in the tation and a translation parallel to the 
ider is a develop- axis. One such isometry would trans- 
t can be unrolled form point 0 into point 1. Other screw 
:w element enters displacements can also be considered, 
:rns on a cylindri- such as 0 to 5, 0 to 13, and an unlim- 
e symmetry must ited number of others. Alternatively, 
he circumference. one can visualize ranks of points as 
iese patterns has arranged along helices, and these will 
austively by Iter- be referred to as parastichies. Just as 
his mathematical in an orchard where trees are arranged 
I propose that in rows in many directions, many 

ecifically of the parastichies can be traced through the 
1 the surface of a points. In general, the parastichies are 
the basis for de- helices, although in the limiting cases 
aspects of ultra- they are circles (whorls), or vertical 
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generators of the cylinder (ortho- 
stichies). Certain parastichies are sub- 

jectively more evident than others. It 
is convenient to specify a given pattern 
by citing the two or three sets of evi- 
dent parastichies, which are of inter- 

mediate pitch, connect nearest points, 
intersect most nearly at right angles, or 
have some other stated property. 

Cylindrical patterns of points may 
be constructed so that all points fall on 
a single generative helix, or I-paras- 

tichy. In this case only one point 
occurs at a given distance along the 
length of the cylinder, or, if the cir- 
cular circumference of the cylinder 
were drawn through a given point, it 
would pass through no other point. In 

Table 1. Parameters of models of hexagonally packed spheres of unit radius, whose centers are 
of strands or near-longitudinal parastichies. 

on a circular cylinder, classified by number 

Divergence Vertical Radius of Inclination of parastichies 
Contacts 

k(m, nt m + n) a displacement cylinder 
(degrees) (degrees) (degrees) (degrees) (degrees) 

Three strands 
1.6329931 
0.6324555 

Four strands 
1.6817928 
0.4693787 
1.0 

Five strands 
1.7013016 
0.3719648 
0.3960824 

Six strands 
1.7111994 
0.3075215 
0.6513963 
1.0 

Seven strands 
1.7169464 
0.2618672 
0.2759292 
0.2845311 

Eight strands 
1.7205911 
0.2278914 
0.4781292 
0.2470401 
1.0 

Nine strands 
1.7230522 
0.2016509 
0.2107296 
0.6533239 
0.2217071 

Ten strands 
1.7247940 
0.1807896 
0.3766097 
0.1944493 
0.3970983 
1.0 

Eleven strands 
1.7260729 
0.1638156 
0.1701343 
0.1754887 
0.1794356 
0.1815468 

Twelve strands 
1.7270401 
0.1497400 
0.3102475 
0.4794166 
0.6539269 
0.1658479 
1.0 

Thirteen strands 
1.7277895 
0.1378816 
0.1425214 
0.1466362 
0.1500103 
0.1524231 
0.1536854 

1.1547005 
1.0392305 

1.4142136 
1.2905240 
1.2247449 

1.7013016 
1.5712212 
1.4862538 

2.0 
1.8651700 
1.7692473 
1.7320508 

2.3047649 
2.1663703 
2.0623138 
2.0037630 

2.6131259 
2.4719986 
2.3615130 
2.2888251 
2.2630334 

2.9238044 
2.7805347 
2.6648441 
2.5817903 
2.5377417 

3.2360680 
3.0910831 
2.971,1125 
2.8799837 
2.8223445 
2.8025171 

3.5494655 
3.4030824 
3.2795451 
3.1818903 
3.1136676 
3.0783987 

3.8637033 
3.7161614 
3.5896154 
3.4865583 
3.4098054 
3.3622191 
3.3460652 

4.1785815 
4.0300657 
3.9009549 
3.7933449 
3.7095399 
3.6518984 
3.6224690 

0.000 
14.818 

0.0 
12.035 
27.465 

0.0 
9.938 

21.810 

0.0 
8.399 

18.083 
28.869 

0.0 
7.246 

15.427 
24.460 

0.0 
6.359 

13.436 
21.179 
29.363 

0.0 
5.659 

11.889 
18.654 
25.828 

0.0 
5.094 

10.654 
16.654 
23.016 
25.592 

0.0 
4.630 
9.647 

15.033 
20.735 
26.659 

0.0 
4.241 
8.811 

13.693 
18.852 
24.225 
29.717 

0.0 
3.912 
8.105 

12.568 
17.274 
22.179 
27.216 

-53.481 
-35.889 

-56.558 
-43.116 
-27.465 

-57.858 
-47.144 
-34.954 

-58.535 
-49.688 
-39.716 
-28.869 

-58.933 
-51.385 
-43.000 
-33.885 

-59.188 
-52.623 
-45.394 
-37.569 
-29.363 

-59.361 
-53.556 
-47.210 
-40.374 
-33.168 

-59.484 
-54.282 
-48.634 
-42.573 
-36.178 
-25.592 

-59.574 
-54.864 
-49.772 
-44.340 
-38.606 
-32.668 

-59.643 
-55.339 
-50.715 
-45.790 
-40.602 
-35.213 
-29.717 

-59.696 
-55.734 
-51.497 
-46.999 
-42.267 
-37.346 
-32.302 

53.481 
71.289 

56.558 
69.617 
90.0 

57.858 
68.238 
81.963 

58.535 
67.156 
77.684 
90.0 

58.933 
66.304 
74.923 
84.782 

59.188 
65.622 
72.950 
81.168 
90.0 

59.361 
65.069 
71.452 
78.506 
86.098 

59.484 
64.611 
70.270 
76.456 
83.092 
90.0 

59.574 
64.227 
69.311 
74.821 
80.710 
86.870 

59.643 
63.901 
68.517 
73.485 
78.775 
84.317 
90.0 

59.696 
63.621 
67.848 
72.372 
77.171 
82.199 
87.382 
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3(0,1, 1) 
(1,2,3) 

4(0, 1, 1) 
(1,3,4) 

2(1,1,2) 

5(0, 1, 1) 
(1,4,5) 
(2,3,5) 

6(0, 1,1) 
(1,5,6) 

2(1,2,3) 
3(1, 1,2) 

7(0, 1, 1) 
(1,6,7) 
(2,5,7) 
(3,4,7) 

8(0,1,1) 
(1,7,8) 

2(1,3,4) 
(3,5,8) 

4(1, 1,2) 

9(0, 1, 1) 
(1,8,9) 
(2,7,9) 

3(1,2,3) 
(4,5, 9) 

10(0, 1, 1) 
(1,9, 10) 
2(1,4,5) 
(3, 7, 10) 
2(2, 3, 5) 
5(1, 1,2) 

11(0,1,1) 
(1, 10,11) 

(2,9,11) 
(3,8,11) 
(4,7, 11) 
(5,6,11) 

12(0, 1, 1) 
(1, 11, 12) 
2(1,5,6) 
3(1, 3,4) 
4(1, 2, 3) 
(5, 7,12) 
6(l, 1,2) 

13(0, 1, 1) 
(1, 12, 13) 
(2,11, 13) 
(3, 10,13) 

(4,9,13) 
(5, 8, 13) 
(6, 7, 13) 

60.0 
131.810320 

45.0 
97.743120 
90.0 

36.0 
77.414817 

-141.843980 

30.0 
63.979611 
64.605543 
60.0 

25.714286 
54.468269 

-152.220650 
-102.114200 

22.50 
47.393551 
48.557790 

135.960910 
45.0 

20.0 
41.931568 

-158.479760 
42.948100 

-79.658580 

18.0 
37.590442 
38.604707 

-107.068080 
-71.023387 

36.0 

16.363636 
34.058980 

- 162.513870 
131.766390 
98.721924 

-65.269777 

15.0 
31.130975 
31.948959 
32.335872 
32.180692 

150.281250 
30.0 

13.846154 
28.664515 

- 165.301620 
-110.065450 
-82.549293 

-138.133930 
-55.273449 

120.0 
131.810320 

90.0 
97.743120 
90.0 

72.0 
77.414817 
76.312040 

60.0 
63.979611 
64.605543 
60.0 

51.428572 
54.468269 
55.558700 
53.657400 

45.0 
47.393551 
48.557790 
47.882730 
45.0 

40.0 
41.931568 
43.040480 
42.948100 
41.365680 

36.0 
37.590442 
38.604707 
38.795760 
37.953226 
36.0 

32.727273 
34.058980 
34.972260 
35.299170 
34.887696 
33.651115 

30.0 
31.130975 
31.948959 
32.335872 
32.180692 
31.406250 
30.0 

27.692306 
28.664515 
29.396760 
29.803650 
29.802828 
29.330350 
28.359306 
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this case the pattern is simple. Sym- 
metrical patterns may also be con- 
structed so that the points lie on two 
or more generative helices, in which 
case two or more points can be found 
on a circumference of the cylinder. 
Such patterns are said to have jugacy 
greater than 1 (4). Patterns with 2, 
3, or k generative helices are bijugate, 
trijugate, or k-jugate. Unless otherwise 
stated, I will discuss only the simple, 
1-jugate patterns. 

When a pattern is specified by citing 
two sets of parastichies they will be 
referred to as the m- and n-parastichies, 
where m and n are integers. Referring 
to Fig. 1, one might take m=5, n = 
8, and note that one of the 5-paras- 
tichies connects points 0, 5, 10, 15 . . , 
that is, that one of the m-parastichies 
connects points 0, m, 2m, 3m .. 
Another m-parastichy connects points 
1, 6, 11, 16 . .., or 1, m + 1, 2m + 1, 
3m + 1 .. , and so on, also for the 
set of n-parastichies, and other sets. It 
should be clear that there are m m- 
parastichies, and n n-parastichies. 

In addition to m and n, which can 
be said to specify the symmetry prop- 
erties of a pattern of points on a cyl- 
inder, other parameters are needed to 
specify its dimensions. One of these is 
the angle of rotation and another the 
length of the translation which consti- 
tute the screw displacement transform- 
ing point 0 to point 1. The first param- 
eter is termed the angulair divergence, 
and is designated a by Iterson (2). In 
this article a is given in degrees in 
Table 1 and the graphs, and in radians, 
ranging from --7r to ,r, in the equa- 
tions. Values of the translational dis- 
placement, h, depend on the radius 
of the cylinder, R. Other parameters, 
such as the length of arc or chord be- 
tween points, and the angle of inclina- 
tion of a parastichy, can be derived 
from these. 

Other derived parameters are con- 
cerned with screw displacements along 
m- and n-parastichies. (i) The vertical 
displacement, or translation, for the 
m-parastichies, from point 0 to m, 
from m to 2m . . . , is mh. Similarly, 
between successive points along n- 
parastichies, it is nh. (ii) The secon- 
dary divergence for the m-parastichies 
is the angular divergence from 0 to m 
. . ., and for the n-parastichies, from 
0 to n ... .If this is measured along 
the generative helix, it is ma for the 
m-parastichies, and na for the n-paras- 
tichies. This may be a large angle, 
involving one or more circuits around 
the cylinder, and it will be convenient 
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Fig. 1. A regular 
point set on a cylin- * 
drical surface, in per- 
spective, and with the 
cylindrical surface un- 
rolled into a plane. 0 

The generative helix 
is indicated by con- 
secutive integers, 0, 1, * 
2 . ., and 3-, 5-, 
and 8-parastichies, by 
solid lines. 1 

13 

for some equations to subtract an 
integer multiple of 27r, the integer 
chosen to give the secondary diver- 
gence as the smallest angle, positive or 
negative, from point 0 to m, or from 
0 to n. This smallest value of the sec- 
ondary divergence will be symbolized 
Sm, or 8,, and formulated 

,, =- ma - 2tr 

An == na -- 2tr (1) 

where the integer t in each case is so 
chosen that - r < 8, < <r, for example. 
These equations are a statement of the 
familiar rules of trigonometry which 
are used in evaluating functions of 
large angles. 

In general, it is not possible to draw 
spheres centered on the points of a 
cylindrical point set, so that they will 
pack uniformly. This is possible only 
with certain restrictions. From a con- 
sideration of packing of uniform 
spheres into a flat box, one restriction 
is clear, namely, that the points must 
be equidistant along two parastichies 
for rhombic packing, and along three 
for hexagonal packing (5). 

Consider the arrangement of spheres 
which are in contact with each other, 
first along a single parastichy of a cyl- 
inder, then along two sets of paras- 
tichies (rhombic packing), then along 
three (hexagonal packing, or triple- 
contact arrangements). These are the 
subjectively evident parastichies, and 

Fig. 2. Diagram of two tangent spheres, 
whose centers, 0 and m, are on the sur- 
face of a cylinder. The center of sphere 
1 is also indicated. Symbols: a, angular 
divergence; h, translational displacement; 
8m, secondary divergence; 2r, distance be- 
tween centers of two tangent spheres; /3, 
inclination of generative helix to the cir- 
cumference of the cylinder. 

the criterion for their selection is that 
the spheres which are centered on their 
points are tangent. They are contact 
parastichies, designated m, n, and m + 
n. In this case, m and n have no com- 
mon divisor, and we choose n> m, 
except when m = n = 1. 

In Fig. 2, the generative helix con- 
necting point 0 and point 1 is shown, 
and two spheres, of radius, r, centered 
at the points 0 and m. The inclination 
of the generative helix to the circum- 
ference is p, and the vertical distance 
from point 0 to 1 is 

h = Ra tan p (2) 
where R is the radius of the cylinder. 
The vertical distance to point m is 
mh = mRa tan p. This is the altitude 
of the right triangle (Fig. 2), whose 
hypotenuse is 2r, the distance between 
centers of two tangent spheres, and 
whose third side is also the base of 
the isosceles triangle, whose vertex is 
on the central axis of the cylinder and 
whose sides are radii of the cylinder. 
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This third side is therefore 2R sin ? ma 
or alternatively, 2R sin I 8,,. The right 
triangle can then be solved to give 

(r/R)2 = '- (ma tan p)2 + sin2 - ma (3) 

From similar consideration of spheres 
in contact along the n-parastichies 

(r/R) = - (na tan 13)' + sin2-! n (4) 

Solving these two equations simul- 
taneously, one has 

(m + n)(n - m) (a tan p) = 

-4 sin - (m + n)a sin- (n- m)a (5) 

Equation 5 may be solved for values 
of a and a tan f3, which will permit 
rhombic packing of uniform spheres, 
with contacts along the m- and n- 
parastichies. The ratio r/R can then 
be found from Eqs. 3 or 4. 

However, Eq. 5 is not a sufficient 
condition for the construction of an 

arrangement of packed spheres, since 
it includes cases where the spheres in- 
tersect. The situation here may be un- 
derstood by visualizing the rhombus 
(5) defined by the centers of spheres 
0, m, n, and m + n, and that defined 
by 0, n - m, m, and n. The distances 
from 0 to m + n, and from 0 to n - 

m, must each be equal to or greater 
than the diameter of the spheres, 2r, 
to assure that the spheres arranged 
along the parastichies m + n, or n - m, 
will not intersect. It may be helpful 
to consult Fig. 3, pattern (3, 5), where 
m =3, n =5, n - m = 2, m +n 8. 
The distances from the centers of 
spheres 0 to 2, and from 0 to 8, are 
each greater than from 0 to 3, and 
from 0 to 5. 

When the distance from 0 to m + n 
equals 2r, the spheres are in contact 
along the m-, n-, and (m + n)-paras- 
tichies, the pattern is a triple-contact, 

or hexagonal packing pattern, and it 
may be designated (m, n, m + n). An 
example of this, with packing sym- 
metry (3, 5, 8), is shown in Fig. 3, 
top right. To find values of a and 
a tan p which apply to such a pattern, 
one first finds an equation similar to 
Eq. 5, for contacts along n- and 
(m + n)-parastichies 

m(m + 2n)(a tan p)2 = 
-4 sin - (m + 2n)a sin -1 ma (6) 

When Eq. 5 is divided by Eq. 6, 
a tan p is eliminated 

(m +- n) (n - m) 
m(m + 2n) 
sin - (m + n)a sin 2 (n - m)a 

~_ 2_ ~ _(7) sin -2(m + 2Ln)a sin -1 ma 

Similarly, when the distance from 0 to 
(n - m) equals 2r, one has the triple- 
contact pattern, (n - m, m, n), with 
a defined by 

2(,1,2) (2,3,5) (3,5) 

84 

(3,7,10) 2(2,3,5) 

(3,5,8) 

5(1,1,2) I 

n(2m - n) - 

m(m + n) 
sin - (2m --n) a sin na 
sin-2 ma sin ( + n) a 
sin - ma sin 1 (nm + n) a (8) 

These triple-contact patterns, (n - m 
m, n) and (m, n, m + n), are limiting 
ones between which the double-contact 
pattern (m, n) exists. It is then of in- 
terest to solve these equations for values 
of a which characterize illustrative pat- 
terns. In practice, values of m and n 
are chosen in some systematic way, and 
values of a are obtained by solving Eq. 7. 
Then Eq. 5 is used to evaluate a tan P. 
The radius of the spheres, r, is taken 
as equal to 1. With this convention, 
R, the radius of the cylinder, can be 
found by substituting a tan / into Eq. 
3, and h, the translational displacement 
of spheres along the generative helix, 
can be found from Eq. 2. 

The preceding paragraphs pertain to 
simple patterns, in which all of the 
spheres lie on a single generative helix. 
In multiple, or k-jugate patterns, upon 
which Iterson (2) did not elaborate, 
there are k generative helices, and the 
patterns have k-fold rotational sym- 
metry, as well as screw symmetry, about 
the axis of the cylinder. The divergence 
along one of the generative helices will 

Fig. 3. Representative tubular arrange- 
ments of spheres, drawn in parallel pro- 
jection onto the plane, in side view, and 
as viewed from above. All are triple- 
contact patterns, except (1, 2), with a = 
144?, h = 0.8266, and (3, 5), with a= 
137.528?, h = 0.3358. Parameters of other 
patterns are given in Table 1. 
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(1,2,3) 3(0,1,1) (1,3,4) (1,2) 4(0,1,1) 
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be referred to as a, and secondary 
divergences as ma or 5, and na or 
8,. Since a k-jugate pattern is sym- 
metrical on rotation through 27r/k 
radians, rather than 2vr as in a simple 
pattern, the following counterparts of 
Eqs. 1 can be written 

,m = ma - 2tr/k 

fn = na- 2tr/k 

m + . = (m + n)a - 2t7r/k (9) 

where the integer t, in each case, is 
chosen so that - 7r/k < am < 7r/k, for 
example. In the prior derivations, 
2R sin I ma, rather than 2R sin a8m, 
was taken as the base of the isosceles 
triangle designated in Fig. 2. It is now 
more convenient to use 8m, leaving this 
angle, 8, and 8m.n to be evaluated by 
Eqs. 9. With this modification, the 
same arguments, and the constructions 
of Fig. 2, apply to the k-jugate pat- 
terns, and the following equations for 
contacts along the m-, n- and (m + n)- 
parastichies are derived 

(r!R)' = ' (ma tan p)2 + sin'2 - m 

4= (na tan 8)2 + sin2 1 an 

= I [(m + n)a tan ]2' + sin2 6m+n 

(10) 

(m + n)(n -m)(a tan p)2 = 
4 sin2 86 -4 sin2 1 8, (11) 

(mn + n)(n - m) 
m(m + 2n) 

sin 2 
8, - sina 2 an 

sin2 2- ,n- sin2 am+n (12) 

On solving Eq. 12, one finds other 
parameters as outlined above for sim- 
ple patterns. 

Numerical Solutions of Equations 

In general, Eqs. 7 and 12 cannot be 
solved directly, so that a numerical ap- 
proximation method must be used. 
Some exceptional cases may be men- 
tioned. In the (1, 2, 3) pattern, Eq. 7 
can be simplified and solved directly 
to give a=131.810?. The pattern (1, 
1, 2) is impossible, since it would re- 
quire that sphere 0 be tangent to 
sphere 1 at two points. The triple con- 
tacts (0, 1, 1) and 2(0, 1, 1) are also 
impossible. The remaining whorled pat- 
terns, k(0, 1, 1), k>3, exist, but for 
them Eq. 12 fails. In each whorl, the 
centers of the spheres define a regular 
plane polygon with k vertices, from 
which 80, and 81 = a, can be deduced. 
For r= 1, two special equations are 
derived by consideration of Fig. 2, R = 
1/sin a, and h2 = 4(1 - sin2?a/sin2a) 
= 4 - sec21a. 
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The interval-halving method of find- 
ing roots (6) was used for the remain- 
ing patterns, a routine based on Eqs. 
9 being used to store values of a, 8m, 
8,, and s,+,, concurrently with each 
step of the iterative solution. Approxi- 
mate starting values of a were obtained 
by a method which Iterson outlined 
(7). They might be found simply by 
trial. 

The angle of inclination of the m- 
parastichies, /u, was found with the 
equation, / = tan--l(mh/R8m) (see Eq. 
2), and similar equations were used 
for the inclinations of the n- and 
(m + n)-parastichies, v and p. 

Table 1 lists the divergence angles, 
a, and several other parameters for a 
number of hexagonal patterns. They 
are arranged according to the number 
of longitudinal or near-longitudinal 
parastichies, or "strands," which they 
display. This number is the index 
(m - n), or k(m + n) in the designa- 
tion of the pattern, and corresponds to 
the number of spheres which would 
appear in cross section. When the 
number of strands is prime, all of the 
patterns are simple, except the whorled 
patterns, k(0, 1, 1), with k equal to 
the number of strands. When the num- 
ber of strands is factorable, there are 
multijugate patterns corresponding to 
the factors (8, 9). The list of patterns 
in Table 1 is complete to k(m + n) = 
13, since it contains the possible com- 
binations of km and kn (10). 

In addition to the divergence, a, the 
secondary divergence, 8m, is listed for 
each pattern. Each of the patterns, 
except k(0, 1, 1) and k(l, 1, 2), 
exists with right- and left-hand screw 
symmetry. The m-parastichies are arbi- 
trarily considered to have right-screw 
symmetry, and 8m is listed as a positive 
angle. In some patterns, the m-paras- 
tichies have the same handedness as 
the 1-parastichy and are said to be 
homodromous with it, and in others 
the m- and 1-parastichies are hetero- 
dromous. In the heterodromous cases, 
a is listed as a negative angle (7). 

The fourth column in Table 1 lists h, 
the vertical spacing along the generative 
helix or helices, and the fifth lists R, 
the radius of the cylinder which is the 
locus of centers of the spheres, the 
radius of the spheres, r, being taken as 
unity. The outer diameter of the cyl- 
inder, that is, the outer envelope of the 
arrangement, is 2(R + 1). The diam- 
eter of the cylindrical hole in the cen- 
ter of the figure, the inner envelope, is 
2 (R - 1). If values of the radius other 
than unity are used, the listed values 

of h and R may be multiplied by this 
value to obtain actual dimensions of 
the model, corresponding to a real 
structure. 

The last three columns of Table 1 
give the angles of inclination to the 
circumference of the cylinder, ,/, v, and 
p, of the m-, n- and (m + n)-paras- 
tichies. For each strand number, the 
whorled pattern, k(0, 1, 1), has two 
sets of parastichies, n and (m + n), 
running in opposite directions with in- 
clinations approaching ? 60?. In the 
remaining patterns the strands become 
more nearly longitudinal as m becomes 
more nearly equal to n. In the pattern 
k(l, 1, 2), the strand number, k(m + 
n), is even and the strands are strictly 
longitudinal. 

Some representative patterns in Fig. 
3 illustrate these same relationships. 
Instructive models can be built of 
spherical beads, each with three holes 
spaced at 60? along the equator of the 
bead. They are strung with elastic cord, 
so that three cords (parastichies!) pass 
through each bead. 

Rhombic or double-contact patterns, 
(m, n) or k(m, n), can be solved by 
substituting appropriate divergence val- 
ues into Eqs. 5 and 3, or Eqs. 11 and 
10. These values of a, 8m..., fall be- 
tween those of the triple-contact pat- 
terns, k(n -m, m, n) and k(m, n, 
m +n), where k - 1. It has not 
seemed worthwhile to tabulate values 
of a, h, and R for these double-contact 
patterns. Instead, R has been plotted 
against a in Fig. 4, for a number of 
patterns. This is related to graphs pub- 
lished by Iterson (2). In Fig. 4, it can 
be seen that an (n- m, m, n) pattern 
can be transformed into an (m, n) 
pattern by decreasing h slightly, in- 
creasing R, and simultaneously either 
increasing or decreasing a. In the pro- 
cess, the contact between spheres 0 and 
(n - m) is broken. By further decreas- 
ing h, increasing R, and coordinately 
changing a, a continuous transforma- 
tion of (m, n) occurs, terminating in 
(m, n, m + n). In general, a triple- 
contact pattern, (m, n, m + n) can be 
transformed into any of the three 
double-contact patterns, (m, n), (m, 
m + n), or (n, m + n), by breaking 
the contacts, m + n, n, or m, respec- 
tively. This transformation is also il- 
lustrated in Fig. 3, upper right, where 
the (3, 5) pattern is seen as an inter- 
mediate in the transformation of the 
(2, 3, 5) pattern into the (3, 5, 8). 

Higher order patterns that are not 
included in Table 1 can be approxi- 
mated by a model of hexagonally 
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packed circles on a cylindrical surface, 
if one equates the helical arc lengths 
between centers of circles, rather than 
the straight line distances between cen- 
ters of spheres. A diagram of this 
model is shown in Fig. 5A, where a 
triangle is formed by the m- and n- 
parastichies intersecting at 120? at mn, 
and the circumference of the cylinder. 
The radius of the cylinder, R, can be 
found from the equation relating the 
sides of this triangle 

27rR = 2rs 

where r is the radius of the circles, and 
s = v/m2 + n2 + mn. Equations for the 
parameters of this model are given 
without further derivation, in terms of 
the radical, s (7, 11) 

a,, = (m + 2n)7r/s2, A = (2m + n)7r/s' 

R =krslir, h= r/3-/s 

A COs/_' m + 2n) Co 2nm + n\ 
2cos-( 2 v = cos( 2s 

) 

? = A +7r/3 (13) 
The closeness of the approximation is 
indicated by the following values for 
the (5, 8, 13) pattern of circles of unit 
radius, which may be compared with 
the values for the (5, 8, 13) pattern of 
spheres in Table 1 

.,, = 29.302?; h = 0.15350; R = 3.61531 
= 22.411?; v= 37.589'; = 82.411? 

Approximations can also be made 
graphically by drawing diagrams on 
isometric graph paper, and numbering 
the intersections of the coordinates 
which intersect at 60? with each other, 
as in Fig. 5A. Measurements made 
from the diagram, together with slide- 
rule calculations, may give satisfactory 
estimates of the parameters of the 
model of circles on a cylinder. 

Application 

If one considers the variety of pat- 
terns enumerated herein and the tech- 
niques available for investigating bio- 
logical structures, it would seem that 
the most direct way to determine the 
packing symmetry of tubular structures 
would be to find (i) evidence that the 
packing is nearly hexagonal, (ii) the 
number of monomers which appear in 
a section perpendicular to the axis, and 
(iii) the angles of inclination of one 
or more sets of contact parastichies. 
Then by comparison with the spherical 
models (Table 1) it should be possible 
to make a choice. For instance, if it 
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were found that a hexagonally packed 
structure were 13-stranded, one might 
choose the (4, 9, 13), (5, 8, 13), or 
(6, 7, 13) pattern depending on 
whether the inclination of the m- 
parastichies, jn, were closest to 17.3?, 
22.2?, or 27.2?. The models are of 
spheres, and it is known that the mon- 
omers of many biological structures are 
markedly nonspherical. It is probably 
sufficient for applicability of this meth- 
od that the monomers appear circular 
in a surface view of the tubule. Where 
the packing cannot be taken as hexag- 
onal, as would be apparent in unequal 
spacing of the three sets of parastichies, 
the parameters of (m, n) or k(m, n) 
patterns, as illustrated in Fig. 4, might 
be solved from Eqs. 5 or 11, for 
comparison with the data. However, 
simple geometric and numerical con- 
siderations should make it possible to 
decide the symmetry in nonhexagonal 
patterns, as described below. 

Where the quality of the electron 
micrographs is not ideal, methods of 
enhancement of their rotational or 
translational periodicity are of value. 
Multiple photographic printing, with 
rotation or translation of the paper be- 
tween exposures (12), has sometimes 
produced striking and convincing re- 
sults. In other cases it has been equiv- 
ocal. A stroboscopic method of en- 
hancement of radial symmetry has also 
been described (13). To enhance the 

longitudinal periodicity it seems desir- 
able to translate in the direction of the 
(m + n)-parastichies, rather than along 
the axis of the tubule. 

Inoue has suggested that longitudinal 
views of these structures might be en- 
hanced by viewing an electron micro- 
graph through a Ronchi ruling placed 
in front of the eye (14). The Ronchi 
ruling can be turned to reinforce each 
set of contact parastichies in turn. The 
distance from the grating to the photo- 
graph should be adjusted so that the 
spacing produced by diffraction coin- 
cides with the spacing of the mono- 
mers. For nonhexagonal patterns the 
proper distance differs for the three 
sets of parastichies. At this distance, 
one can clearly distinguish reinforce- 
ments of the contact parastichies from 
reinforcements in other directions. A 
ruling with six or eight lines per milli- 
meter (15) is suitable for viewing 
micrographs printed at magnifications 
of 1 X 105 to 3 X 105. It should be 
possible to take photographs through 
the ruling, and to make precise angular 
measurements of the reinforced photo- 

graphs, but we have not explored this 
possibility. 

A method of computer enhancement 
of rotationally symmetrical images has 
been described (16), in which the 
image is represented in computer stor- 
age as an array of optical density mea- 
surements from a film scanner. These 
are analyzed to provide a rotational 
power spectrum, that is, a plot of a 
radial power integral against rota- 
tional frequency. From this, it is possi- 
ble for one to judge the frequency 
which best corresponds to the sym- 
metry of the image, and to reconstruct 
the image in terms of the radial density 
distribution of an average sector, re- 
jecting nonperiodic density variations 
which are presumably noise. This 
method has the advantage of providing 
an objective basis for deciding the 
number of monomers in the cross sec- 
tion-that is, the number of strands. 

The optical diffraction method of 
analysis of tubules viewed perpendicu- 
lar to the axis (17, 18) requires a con- 
sideration of the helical symmetry for 
its successful application, and should 
in theory provide one with a solution of 
the pattern. The original image can be 
reconstructed from the diffraction pat- 
tern (optical transform). Noise in the 
original image can be suppressed in 
the reconstruction, and, in particular, 
it is possible to obtain separate images 
of the two sides of a cylinder which 
are superimposed in the original. This 
is done by preparing masks which 
select spots corresponding to either the 
near or far side of the tubule. 

The technical and analytical meth- 
ods which are most appropriate to 
decide the pattern of arrangement of 
monomers in a particular cylindrical 
structure will differ from one case to 
another. To illustrate, I have analyzed 
published photographs and data on a 
number of tubular structures, referring 
to the models of spheres described 
herein. The analyses given below are 
intended only as suggestions of meth- 
ods of analysis, and not as a comprehen- 
sive or critical review of this aspect of 
molecular morphology. 

A bacteriophage tail. To illustrate 
the method of enhancement of electron 
micrographs by optical filtering, Klug 
and DeRosier (17) published a recon- 
structed image of the tail of an un- 
identified bacteriophage (their figure 
5c). Two prominent intersecting sets 
of parastichies are visible, but the au- 
thors do not state how many there are. 
From the published illustration the in- 

SCIENCE. OL. 181 



clinations of the parastichies were mea- 
sured with an ordinary protractor. The 
m-parastichies, running to the left, 
gave a mean angle, /x = 27.37?, with 
standard error, 0.33?, and the n-paras- 
tichies, running to the right, v = 
46.350 + 0.45?. It was not possible to 
measure the (m + n)-parastichies with 
much confidence, but they appear to 
be at about 83?. Since / + v = 73.72?, 
rather than about 60?, the packing is 
not hexagonal, raising the question 
whether the m- and n-parastichies have 
the same spacing. Measurement gave 
a mean distance between units along 
the m-parastichies, dm = 1.177 mm or 
4.90 nm, and along the n-parastichies, 
dn= 1.167 mm or 4.86 nm. The data 
of Table 1 and Fig. 4 are not appli- 
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cable, but a graphical approximation 
to the pattern may be constructed by 
drawing a grid of parallel lines similar 
to those in Fig. 5A, with / = 27.4?, 
v = 46.4?, spaced in the ratio 1.177/ 
1.167. With a little experimentation, 
the intersections were numbered with 
in = 5, n = 8, so that the line con- 
necting the points marked 0, or other 
identical numbers, was very nearly 
horizontal, indicating that the pattern 
is (5, 8). 

A more objective analysis can be 
devised by considering the triangle of 
Fig. 5A, two sides of which are the 
m- and n-parastichies which intersect 
at point 0 and again at point mn. Since 
there are n points along the m-paras- 
tichy, and m along the n-parastichy, 

the lengths of these sides, adjusted for 
the spacing of the parastichies, are in 
the ratio m/n. If one takes Q as an 
estimate of m/n 

Q = (dm sin ,)/(dl sin v) (14) 
With the data given above, Q = 0.641, 
with 0.95 confidence limits, 0.625 and 
0.657 (19). If one makes the liberal 
assumption that the number of strands, 
(m + n), is between 9 and 17, one 
finds that the only pattern, whose ratio, 
m/n, lies within the confidence limits 
for Q, is (5, 8), and it seems certain 
that this illustration represents a (5, 
8) rhombic pattern. 

Turnip yellow mosaic virus. Hitch- 
born and Hills (20) described tubular 
structures which are formed in plants 
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Fig. 4. Radius of cylinder R, plotted against divergence, a, for tubular arrangements of tangent spheres, with up to 21 strands. 
The spheres are of unit radius. The parameters of double-contact patterns are represented by arcs, labeled k(m, n), and of 
triple-contact patterns, by pluses at the intersections of arcs, labeled k(m, n, m + n). Some labels are omitted or abbreviated 
to strand number alone, k(m + n). (A) Simple patterns, (B) bijugate and trijugate patterns, (C) k-jugate patterns with k > 3. 
In (A), the 10-strand and 13-strand triple-contact patterns are connected by dashed lines. 
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infected with a necrotic strain of turnip 
yellow mosaic virus. Their electron 
micrograph, its optical transform, and 
a pattern obtained by rotating the 
micrograph through 60? in successive 
exposures, demonstrate an organiza- 
tion of the monomers into hexamers, 
which are themselves in a hexagonal 
configuration. The highest-order con- 
tact parastichies of these hexamers, 
k(m + n), are inclined at 7? to the 
axis, implying the = 23, v = 37?. 
If one assumes that the structure was 
completely flattened on the grid, a 
comparison of the diameter of the 
tube with the 8.4-nm spacing of the 
hexamers gives an estimate of 42 
strands. The parameters of 42-strand 
patterns are not listed in Table 1, but 
an estimate of m/n from Eq. 14, 0.649, 
suggests the pattern (17, 26, 43). 
Other patterns, such as 2(8, 13, 21) 
and 9(2, 3, 5) can be considered, but 
more precise measurements would be 
required for one to choose among 
them. The authors state that these 
tubules are not constant in diameter, 
and it is understandable that they may 
also vary in their contacts. 

Polyheads of T4 bacteriophage. In 
their study of abnormal long tubular 
structures which are formed of head 
protein by a mutant of the bacteri- 
ophage T4D, DeRosier and Klug (18) 
presented electron micrographs and 
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reconstructed 

Fig. 5. (A) Diagram of 
circles hexagonally 
packed on the surface of 
a cylinder. Symbols: ji, 
angle of inclination of 
m-parastichies; v, inclina- 
tion of n-parastichies; 
other symbols defined in 
Fig. 2 and text. (B and C) 
Diagrams of the arrange- 
ment of monomers in a 
microtubule, based on 
chemical and x-ray dif- 
fraction data. Two 
classes of monomers, 
tubulins 1 and 2, shown 
as light and dark circles, 
are arranged along al- 
ternating 6-parastichies. 
The two possible ar- 
rangements of hetero- 
dimers are shown, with 
bonds along the 13-paras- 
tichies (B), and along 
the 7-parastichies (C). 
The rectangle in the 
lower right-hand corner 
of (B) represents the ver- 
tical and diagonal pack- 
ing distances a and b, 
found by x-ray diffrac- 
tion analysis (39). 

images made from 
masked optical transforms of the mi- 
crographs. It appears that these tubules 
are formed within the bacterial cell as 
assemblages of concentric cylinders, 
which are separated during preparation 
for study. Therefore, tubules of sev- 
eral diameters are seen. The filtered 
images show a highly regular arrange- 
ment of hexamers, each consisting of 
six monomers at the vertices of a hex- 
agon. I will discuss only the arrange- 
ment of the hexamers, although there 
are interesting questions of the more 
detailed structure. In an illustration of 
a tubule of about 80 nm diameter (18, 
plate II, lower right; my Fig. 6A) the 
mean inclinations of 10 m-, 10 n-, and 
7 (m + n)-parastichies are , = 22.88? -+ 

0.090, v=36.06? ?0.17?, P= 82.36?0 
0.06?. Nine near-longitudinal paras- 
tichies appear in the illustration, so 
that one might assume that k(m +n) 
is 20 or more. If one uses Eq. 14, Q is 
0.6605 ? 0.0082. Of the patterns with 
k(m + n) ranging from 18 to 28, only 
4(2, 3, 5) and 5(2, 3, 5) have a ratio, 
m/n = 0.6667, which falls within the 
confidence limits for Q. The estimated 
angles, ,u, v, 0c, also agree well with 

computed values for the 4(2, 3, 5) 
hexagonal pattern of spheres, 23.314?, 
36.485?, and 83.335?. If it can be as- 
sumed that the tube was fully flattened, 
the pattern is 4(2, 3, 5). In another pa- 

per, these workers (21) show electron 
micrographs of several other polyheads. 
Analyzed in the same way, plates I and 
V of that paper are 2(3, 4, 7), plate 
III, top right, is either (6, 13, 19) or 
(7, 15, 22), and plate III, lower right, 
is 8(1, 2, 3). These images appear to 
be well worth further study. 

Capsid of the bacteriophage cpCbK. 
Leonard et al. (22) have analyzed the 
symmetry of the head or capsid of 
bacteriophage pCbK by optical diffrac- 
tion of shadowed and negatively stained 
electron micrographs. The capsid con- 
sists of a tubule with a hexagonal pack- 
ing pattern of units which appear from 
the chemical evidence to be made up of 
several proteins. It is capped at each 
end with an icosahedral dome. Mea- 
surements of the diameter of the tubule 
lead to an estimate of 15 near-longi- 
tudinal strands, and the authors present 
a model of sticks and plastic connec- 
tors, in which the tubule has the sym- 
metry 5(1, 2, 3). (Their parameters, 
n, v, u, are identical with k, m, n, of 
this article.) In their model the cap 
conforms to the triangulation number, 
T = 7, which as noted (11) is identical 
with s2 = m2+ n2 + mn, in Eq. 13 
above. 

In the micrographs and optical dif- 
fraction patterns of Leonard et al. (22, 
plate III), the inclination of the m- 
parastichies, j/, is about 110, giving 
m/n about 0.25, and indicating that 
the pattern is 3(1, 4, 5), rather than 
5(1, 2, 3) as they concluded. This 
tubule, which has threefold, rather 
than fivefold, rotational symmetry can 
also be capped by an icosahedral dome, 
with s2 = 7, rotated so that a three- 
fold vertex is at the pole, with the 
required six fivefold vertices symmetri- 
cally placed around it. In either model, 
the symmetry of the cap and of the 
cylindrical part of the capsid are 
closely related, and it would appear 
that a general study of the relationship 
of tubular and polyhedral packing pat- 
terns is in order. 

Tobacco mosaic virus. The symmetry 
of arrangement of monomers in the 
protein coat of the tobacco mosaic 
virus appears to be well understood on 
the basis of x-ray diffraction analysis, 
biochemical studies, and the enhance- 
ment of electron micrographs by image 
rotation, optical diffraction and filter- 
ing, and computer analysis (23). It 
has the contact parastichies (1, 16, 17). 
In Klug and DeRosier's filtered image 
of one side of an electron micrograph 
(17, figure 4c), it is possible to compare 
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the inclinations of the parastichies with 
the theoretical spherical model (Fig. 
3). The 1-parastichy could not be 
measured confidently, but the other two 
angles are v =52.90 + 0.2?, - = 
62.5? ? 0.1?, and can be compared 
with values computed for the model of 
spheres, / = 2.98?, v= 56.82?, b = 
62.81?. The departure from regular 
hexagonal close packing is no doubt 
due to the well-documented nonspheri- 
cal shape of the monomers. 

Actin. Because of its importance as 
a constituent of muscle, actin has been 
studied extensively by a variety of tech- 

niques, of which the most pertinent to 
its ultrastructural symmetry are x-ray 
diffraction analysis and electron micros- 
copy of purified preparations. Hanson 
and Lowy (24) present two models 
for F-actin, one based on their electron 
micrographs and the other on x-ray 
diffraction data of others. The models 
consist of two strands of monomers 
twisted 180? over a distance of 13 
monomers in the electron micrographs, 
or 15 monomers in the x-ray prepara- 
tions. In the terminology of this article, 
this is the double-contact pattern, (1, 
2). This pattern (see Figs. 3 and 4) 

exists over a range of values of a, 
131.8? to 180.0?, and of h, 0.632 to 
1.00. Actin does not correspond to the 
fully extended (1, 2) pattern with a = 
180.0?, h = 1.0, nor is it likely that 
it can approach the limiting triple-con- 
tact configuration, (1, 2, 3) (Fig. 3). 
Whether the potential for extension and 
contraction, suggested by the geo- 
metric model, has any counterpart in 
the function of actin, is a matter on 
which I cannot comment. 

Bacterial flagella. The flagella of 
Salmonella and several other genera 
of bacteria can be removed from the 

Fig. 6. (A) Optically filtered image of a polyhead of bacteriophage T4 (18), showing a 4(2, 3, 5) arrangement of hexamers, 
spaced about 10.0 nm along the parastichies. (B-I) Electron micrographs of straight flagella of Salmonella, showing a 2(2, 3, 
5) arrangement of monomers; (B) negatively stained micrograph, (C) optically filtered image of (B), (D) negatively stained micrograph, and (E) the same micrograph enhanced by quadruple printing with translation by 5.2 nm parallel to an 
(mn + n)-parastichy, between exposures. (F-I) Negatively stained transverse section of a flagellum (F), and the same micro- 
graph multiply printed with rotation through 1/9 (F), 1/10 (G), and 1/11 (H) of 360? between exposures. Diameter = 17.5 nm. 
There are clearly ten strands. (J-0) Electron micrographs of microtubules, in which the arrangement of monomers is (6, 7, 13). (J) Transverse section of microtubules of the axoneme of Echinosphaerium. (K) Transverse section of a reconstituted microtubule of embryonic chick brain. (N) Transverse section of sperm tail of Lytechinus pictus, with membrane removed. (L-M) Details of central and outer fibers of (N). (0) Longitudinal section of an outer fiber of (N), in which reinforcement of the monomers can be seen with a Ronchi ruling. [(A) Reproduced from DeRosier and Klug (18) with permission of Academic Press; (B and C) from O'Brien and Bennett (29), with permission of Academic Press; (D-I) courtesy of Gerber and Routledge (30); (J-0) 
courtesy of Bryan and Tilney (37)1 
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cells and dissociated into monomers 
with a molecular weight of about 4 X 
104. Studies of dielectric relaxation 
(25), low-angle x-ray scattering (26), 
and gel permeation chromatography 
(27). indicate that the molecules are 
elongate, having an axial ratio near 
10. In negatively stained electron mi- 
crographs, the intact flagella present at 
least two well-marked patterns, referred 
to as the stranded and beaded appear- 
ances, in which the monomers appear 
to be organized either into longitudinal 
strands or into a helical configuration 
(28). Under suitable conditions, a solu- 
tion of the monomers reaggregates to 
form filaments with apparently the 
same structure as the native flagella. In 
addition to the ultrastructural detail, the 
flagella usually have a long wavelength 
helical form, embracing several thou- 
sand monomers per gyre. 

The Salmonella strain SJ814 is a 
mutant with straight flagella which ap- 
pear to be particularly suitable for 
ultrastructural analysis. Using this 
mutant, O'Brien and Bennett (29) 
have made a study by optical diffrac- 
tion of electron micrographs of nega- 
tively stained flagella, and published 
reconstructed images of the two sides 
of flagella. In their plate IIc (my Fig. 
6C), a filtered image of one side of a 
flagellum, there is some lack of regu- 
larity, in that the angles ,u and v dif- 
fer by 4? or 5? between the center of 
the figure and its top and bottom. De- 
spite this, the 12 central m- and n- 
parastichies yield estimates, u = 23.68? 
-- 0.24?, v = 28.51? + 0.650, d, 2.07 
mm, d, = 2.45 mm. The sum, uL + v= 
52.37? ? 0.69?, shows that the packing 
is not hexagonal. By using Eq. 14, Q = 
0.715, with a 0.95 confidence interval, 
0.679 to 0.751. The authors conclude 
(on inadequate evidence, I believe) 
that there are 11 strands. Of the pat- 
terns with 9 to 13 strands, only pattern 
(5, 7, 12), with m/n = 0.714, falls 
within the limits for Q. The pattern 
2(2, 3, 5) should also be considered 
even though its ratio is less than 0.679, 
since the two 11-strand patterns (4, 7, 
11) and (5, 6, 11), with ratios 0.571 
and 0.833, respectively, are much fur- 
ther beyond the limits. 

This Salmonella strain, SJ814, is 
under investigation by Gerber and 
Routledge (30). Figure 6F shows an 
example of a number of electron 
micrographs of sectioned flagella which 
have been enhanced by multiple print- 
ing with rotation through fractions of 
360?, ranging from 1/4 to 1/14. In 

every case, rotation through 36?, 71?, 
714 

or 72? gives the most satisfactory re- 
inforcement, and gives evidence that 
there are ten strands (Fig. 6, G to I). 
Figure 6D is a side view of a nega- 
tively stained flagellum, and Fig. 6E 
is its enhanced image, made by quad- 
ruple printing with translation by 5.2 
nm along an (m +n)-parastichy. Mea- 
surements of ju, v, and the spacing in 
this enhanced photograph give 0.95 
confidence limits for m/n, 0.592 to 
0.694, which clearly indicate that the 
pattern is 2(2, 3, 5). Similar analysis 
of several other micrographs leads to 
the same conclusion. 

Viewed through the Ronchi ruling, 
micrographs of these flagella show re- 
inforcement of the 2- and 3-paras- 
tichies, Iboth to the right and to the 
left at the predicted angles, 23? and 
36?, as nearly as can be judged. It 
would require only a slight transforma- 
tion of the 2(2, 3, 5) pattern to break 
the contacts along the 3-parastichies 
and tilt the 5-parastichies into a strictly 
longitudinal orientation, producing the 
stranded appearance. I have examined 
a considerable number of published 
and unpublished micrographs of Sal- 
monella flagella and find the appear- 
ance of the parastichies consistent in 
all. 

It is most interesting that Harris and 
Scriven (31) present a photograph of 
a 2(2, 3, 5) model made of rubber 
balls to illustrate their theory that dis- 
locations may account for the long 
wavelength curvature of normal flagella 
of Salmonella. 

There is undoubtedly a variety of 
patterns of flagellar organization among 
the bacteria, as Asakura (32) has in- 
dicated. In Escherichia coli, Grund 
(33) has provided illustrations of 
flagella prepared by freeze-etching and 
heavy metal shadowing. The paras- 
tichies in his micrographs are at about 
60?, and appear therefore to be n and 
(m+n), so that m has a low inclina- 
tion. The number of strands is appar- 
ently not known, but one might hazard 
a guess that the pattern is (1, 8, 9), 
(1, 9, 10), or (1, 10, 11). 

Microtubules. Microtubules have 
been described from the cells of a large 
number of eukaryotic organisms, and 
appear to play a variety of roles in cell 
architecture and function. Until quite 
recently there appears to have been lit- 
tle information on the packing sym- 
metry of monomers in these structures. 
However, Ledbetter and Porter (34) 
and Porter (35) published unequivocal 
micrographs demonstrating 13 subunits 
in cross sections of microtubules in a 

conifer, Juniperus chinensis, and an 
angiosperm, Euphorbia milii, due ap- 
parently to a natural negative staining 
effect. The clarity of the images sug- 
gests that f must be high, as in (5, 8, 
13) or (6, 7, 13). Figure 6J shows a 
negatively stained section of two micro- 
tubules of the axoneme of Echino- 
sphaerium nucleofilum (36, 37). Fig- 
ure 6K is a section of a reconstituted 
microtubule from embryonic chick 
brain (37). Both of these micrographs 
show 13 subunits clearly. 

The flagella and cilia of eukaryotes 
are complex structures consisting of 
nine outer fibers, which themselves are 
complex, and two inner fibers, with an 
outer membrane and other structures 
(38). The outer fibers consist of two 
connected tubules, the A subfibers 
which are cylindrical and the B sub- 
fibers which are incomplete cylinders 
attached laterally to the A subfibers. 
Figure 6N is an electron micrograph 
of a section of a sperm tail of the sea 
urchin Lytechinus, with the flagellar 
membrane removed (37). There are 
clearly 13 subunits in the circular sec- 
tions of the A subfibers, 11 in the B 
subfibers (Fig. 6M), and 13 in the two 
central singlets (Fig. 6L). 

Cohen et al. (39) have studied puri- 
fied samples of the A tubule of outer 
fibers of sperm tails of the sea urchin 
Strongylocentrotus by x-ray diffraction 
and proposed either a 12- or 13- 
stranded structure, the adjacent strands 
alternately half-staggered. The packing 
distances which Cohen et al. propose, 
a= 4.0 nm for the vertical spacing, 
and b = 5.3 nm, the diagonal distance 
to the centered unit (!Fig. 5B), imply 
that the pattern is either 6(1, 1, 2) or 
(6, 7, 13), as in their diagrams. It is 
not a regular hexagonal pattern, how- 
ever, since that would require that 
a = b. 

Side views of flagellar outer fibers, 
such as those of Grimstone and Klug 
(40) of the flagellate Trichonympha, 
and longitudinal sections such as in 
Fig. 60 indicate that. the 13-paras- 
tichies are strictly longitudinal. With 
this fact and the dimensions provided 
by Cohen et al. (39), an approximate 
model of the microtubules can be con- 
structed. Since 13=0?, a =55.385? 
(Eq. 1). The subunits are most closely 
spaced, 4.0 nm, along the 13-paras- 
tichies, and next most closely along 
the 6-parastichies, as can be seen in 
the diagrams, Fig. 5, B and C. If one as- 
sumes that 5.3 nm is the average spac- 
ing along the 6- and 7-parastichies, the 
triangle of Fig. 5B can be solved to 
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give d6 = 5.24 nm, d7 = 5.36 nm, and 
the radius, R = 10.55 nm, which agrees 
with the outer and inner radii, 11.6 
and 8.5 nm, given by Cohen et al. 
(39). The inclinations of the 6- and 
7-parastichies are nearly equal, j = 

20.6? and v = 23.7?. It is possible to see 
reinforcement of subunits along these 
parastichies with the Ronchi ruling in 
many micrographs of microtubules 
from various sources. However, the 
inclination of the superimposed 6- and 
7-parastichies is usually about 19?, 
rather than about 22?, as predicted 
from the model. This agrees with 
Thomas's data (41), and suggests some 
distortion in the electron micrographs. 
This model does not take into account 
the indication of x-ray diffracting fea- 
tures at different radii, the detailed re- 
lationship of the A and B subfibers, 
and other complexities. 

Chemical studies have shown that 
the protein of flagellar microtubules 
dissociates into dimers, which can be 
separated by gel electrophoresis into 
two components which differ somewhat 
in their amino acid composition and 
other properties (42). The two mono- 
mers apparently occur in equal amounts 
in both the A and B subfibers, and this 
has prompted some speculation about 
the disposition of the monomers, or 
dimers, in the tubules (43). If one as- 
sumes that the two monomers are sym- 
metrically arranged, a consideration of 
the (6, 7, 13) pattern shows that the 
two types must alternate along the odd- 
numbered, 7- and 13-parastichies, and 
that monomers of one type must be 
arrayed along a given 6-parastichy, and 
of the other type along the adjacent 
6-parastichy, as indicated by light and 
heavy circles in Fig. 5, B and C. This 
agrees with a diagram of Stephens 
(44). If one assumes that there is 
preferential heterodimer bonding in the 
assembled microtubule (42), there 
appear to be two possible symmetrical 
positions for the bonds. They may be 
longitudinal, lying along the 13-paras- 
tichies (Fig. 5B), or along the 7-paras- 
tichies, connecting monomers. of the 
two types which belong to adjacent 6- 
parastichies (Fig. 5C) (45). I do not 
know of any evidence which would 
permit a choice between these two 
models. Both models have polarity, as 
shown in the diagrams by the fact that 
the heavy circle in each pair is con- 
sistently toward the top of the page. It 
is interesting to note that Subirana 
(46) has presented arguments that the 
microtubules of the mitotic spindle 
must have this property. 
24 AUGUST 1973 

Summary 

The symmetrical arrangements of 
monomers into such cylindrical struc- 
tures as microfilaments of actin, flag- 
ella of bacteria, microtubules of many 
organisms, and the protein coats of 
viruses can be specified by citing the 
index numbers of two or three sets of 
contact parastichies, or helical ranks 
of monomers, as has been done in classi- 
cal studies of phyllotaxis. This specifi- 
cation has the form k(m, n) or k(m, 
n, m + n), where m, n, and (m+n) 
are parastichy numbers specifying 
screw displacements, and k is the jugacy, 
or frequency of rotational symmetry. 
For simple structures, k = 1. This nota- 
tion has the advantage of terseness 
and of indicating the basic isometries 
of these helically symmetrical struc- 
tures. 

Theoretical models of the packing of 
spheres whose centers lie on the sur- 
face of a cylinder have been investi- 
gated geometrically. Their symmetry 
properties are discussed. Parameters of 
these models, such as the angular di- 
vergence, a, the longitudinal displace- 
ment between successive spheres, h, the 
radius of the cylinder, and the angles 
of inclination of the parastichies, have 
been computed for representative pat- 
terns. 

The ultrastructural symmetry of sev- 
eral biological structures of this sort 
has been inferred by comparison with 
these models. Actin, for example, has 
the symmetry (1, 2), Salmonella flag- 
ella, 2(2, 3, 5), the tobacco mosaic virus, 
(1, 16, 17) and the microtubules of 
many higher organisms, (6, 7, 13). 
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which intensive efforts have been di- 
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addiction. 
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In the mid-1960's a wave of heroin 
addiction enveloped Washington, D.C., 
and directly affected the lives of an es- 
timated 18,000 residents of that city. 
Almost every other major metropolitan 
area in the United States witnessed a 
similar phenomenon, with associated 
criminal activity and social disruption. 
In response to the obvious need to 
bring the heroin addiction problem un- 
der control, a variety of treatments 
and intervention strategies were devel- 
oped throughout the country. The de- 
bate regarding the effectiveness of ad- 
diction treatment, the role of law en- 
forcement, the value of methadone, 
and the motives of treatment planners 
has been characterized by more heat 
than light and continues unabated and 
unresolved. 

The District of Columbia made a 
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major manpower and monetary com- 
mitment in an attempt to solve its 
heroin addiction problem. There were 
two components to its intervention 
strategy. The first was a comprehen- 
sive, multimodal treatment program for 
addicts, which began in the fall of 
1969 and relied substantially, but not 
exclusively, on methadone (1). The 
second was a major law enforcement 
commitment to reduce the supply of 
heroin in the city, which also began 
in 1969 (2). Observations made during 
the 3 years since the implementation 
of these programs form the basis for 
this article. 

In early 1973, the heroin epidemic 
appeared to be waning in the District 
of Columbia. In this article we docu- 
ment the decline of heroin addiction 
in the nation's capital, using measures 
of the incidence and prevalence of 
heroin addiction, as well as measures 
of the availability, cost, and quality 
of heroin in the streets. It is our in- 
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Methods Methods 

Few data on heroin use were gath- 
ered in the District of Columbia be- 
fore 1969. Since then, data have been 
systematically collected and analyzed 
from a number of sources. Some data 
have been available since 1969. Other 
data only became available as our un- 
derstanding of the addiction problem 
developed. The following sources were 
used during this analysis. 

Patients in treatment. Starting in 
July 1970, information on the year 
and age of first heroin use has been 
tabulated for all patients entering the 
Narcotics Treatment Administration 
(NTA), the city's comprehensive ad- 
diction treatment program. Monthly 
totals of the number of patients enter- 
ing treatment have been available since 
October 1971. This information is sub- 
divided according to type of patient 
referral (voluntary or criminal justice) 
and to whether the patient is new to 
NTA or is being readmitted to treat- 
ment. Periodic surveys have been made 
to elicit information regarding the 
street availability and quality of heroin 
as judged by addicts entering treat- 
ment. Questionnaire information ob- 
tained from addicts has been shown to 
be remarkably reliable (3). 

Urine drug testing. Urine testing for 
heroin has been carried out at three lo- 
cations. Heroin use is indicated by the 

presence of morphine or quinine or 
both in the urine. Arrestees held in the 
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