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Last month news of the apparent 
discovery of yet another sporadic 
group filtered through the mathemati- 
cal community. If confirmed, this 
mathematical entity would be one of 
only 21 known examples of the rare 
and still poorly understood class of 
finite groups known as sporadic. The 
discovery would also be the sixteenth 
such group found since 1965, reflect- 
ing a burst of activity in finite group 
theory that has turned up new sporadic 
groups almost every year and has 
resulted in several other important de- 
velopments in the past decade. Among 
the most intriguing of these develop- 
ments, although its importance is still 
uncertain, is the demonstration of an 
intimate connection between some 
sporadic groups and error-correcting 
codes of the type used to transmit 
binary information reliably in, distor- 
tion-prone environments. 

Sporadic groups play something of 
the role of the joker in finite group 
theory, which has as a basic goal de- 
termination of the structure of all finite 
groups. In classifying these groups 
mathematicians employ the concept of 
a simple group, one which, in some 
sense, cannot be decomposed into sub- 
groups. Simple groups thus constitute 
the building blocks out of which all 
finite groups are constructed. There are 
two well-known classes of simple 
groups: alternating groups, consisting 
of all even permutations of n objects, 
and groups of the Lie type, which have 
strong geometrical analogies. Both 
classes have an infinite number of sim- 
ple groups (each of which has a finite 
number of elements), but these groups 
occur in regular patterns and their 
properties have been extensively 
studied. Most simple groups belong to 
one of these two classes. The major 
exceptions are the sporadic groups. 

Sporadic groups, as their name im- 
plies, do not seem to follow any 
regular pattern. If there should turn out 
to be an infinite number of such anom- 
alous groups, then hopes of classify- 
ing all finite groups would have to be 
discarded. Hence, there is considerable 
interest in sporadic groups and in the 
possibility that they are either limited 
in number or ordered in some way not 
yet perceived. 

Most of the known sporadic groups 
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were found almost by accident in the 
course of trying to establish basic 
theorems about finite groups. Con- 
sidering the uncertainties still sur- 
rounding sporadic groups, some re- 
markably general theorems have been 
proved. In 1963, for example, J. 
Thompson, then at the University of 
Chicago, and W. Feit of Yale showed 
that essentially every simple group has 
an even number of elements. Other 
investigators, trying to prove similar 
theorems, have on occasion run into 
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difficulties that, on further examina- 
tion, turned out to be evidence of a 
new sporadic group. 

The most recently discovered spo- 
radic group was found by M. O'Nan 
of Rutgers University. He was trying 
to classify a particular family of per- 
mutation groups. In the process, he 
encountered a configuration that could 
not be explained in terms of known 
simple groups or in terms of general 
theorems. O'Nan worked out the struc- 
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Mathematical Groups 
One of the simplest and most useful algebraic structures is the group, study 

of which dates back to 1830. The concept is not only of mathematical interest, but 
has found application in fields ranging from quantum mechanics to crystallog- 
raphy. Despite their long history and many uses, groups remain a remote concept 
to many. Since the accompanying two articles concern advances in group theory 
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to many. Since the accompanying two articles concern advances in group theory 
and its applications, this short summary 
groups is offered as a convenient primer. 

A group is a set of elements together 
with an operation which satisfies the 
four axioms shown in Table 1. The ele- 
ments (denoted a, b, . . .) may be any 
sort of object or transformation, includ- 
ing numbers, vectors, physical motions, 
and geometric spaces. The operation 
(denoted by *) may be algebraic or 
geometric, including addition, matrix 
multiplication, and rotation. In some 
instances what is of interest is a semi- 
group (a set of elements that obey all 
but one of the axioms; a semi-group 
may not have inverse elements, for ex- 
ample. 

A familiar example of a group is the 
set of all integers (. . .-1, 0, 1, 2, . .) 
combined with the operation of addi- 
tion. Zero is the identity element and 
the inverse for an integer is its negative. 

Table 1. Group axioms. 
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Closure: for any elements a,b a*b is an 
element of the group 

Associative: (a*b)*c = a*(b*c) 

Identity: there is an element I such that 
I*a = a*I = a 

Inverse: for every element a there is an ele- 
ment a-1 such that a*a- -= a-*a = I 
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In this case, there is an infinite number 
of elements in the group. 

Another common group is the set of 
all (nonsingular) n by n matrices with 
matrix multiplication as the group op- 
eration-the group known as the full 
linear group of dimension n. Not only 
is there an infinite number of elements 
in each group, but there are an infinite 
number of such groups. 

An example of a finite group is given 
in Fig. 1. The elements of the group 
are the possible ways of rotating a 
square so as to change the relative ori- 
entation of its vertices from one of the 
eight possible positions to another; these 
eight motions, including the option of 
no motion at all (the identity element), 
comprise the group. Combination of 
two successive rotations, for example a 
followed by d, is the group operation 
(a*d is equivalent to g, another element 
of the group, as required by the closure 
axiom). For this paricular group, the 
operation is not commutative and the 
order in which it is applied makes a dif- 
ference (a*d = g = d*a). Inverse ele- 
ments exist for all members of the 
group-d*d = I, for example. 

The operations for a group may be 
summarized in a group multiplication 
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In the last 2 years a sweeping new 
theory of critical phenomena has been 
proposed. Although primarily a result 
of new physical insight, the advance 
involves group theory in some forms of 
its expression. 

Everyone knows that when water 
boils at 100?C, a dramatic change in 
the density of the liquid takes place as 
it turns to gas. But when water boils 
at higher temperatures, as it must if 
the pressure is greater than atmospheric 
pressure, the change of density that 
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table such as that given in Fig. 1. Often 
it is convenient to think of groups not 
as composed of particular objects such 
as numbers or rotations, but as a set of 
abstract elements subject to the com- 
bination rule expressed by a multipli- 
cation table. In this more general view, 
groups with the same number of ele- 

I Identity: Don't move square 

a Rotate square 90? counter- 
clockwise 

b Rotate square 180? counter- 
clockwise 

c Rotate square 270? counter- 
~ clockwise 

d Flip over square around axis K-K.- 

e Flip over square around axis L-L 

f Flip over square around axis M-M 

g Flip over square around axis N-N 
g amFlip over square around axis N-Nd=g 

Example: a *d=g 
~ AV 
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occurs in the liquid-to-gas transition 
decreases until at a sharply defined 
critical temperature it disappears en- 
tirely. Above the temperature of 374?C, 
water exists only as steam. All liquid- 
gas systems behave in a similar way, 
though the critical temperatures vary 
widely from one substance ito another. 

But liquid-gas systems are examples 
of only one type of critical phenom- 
enon. Liquid solutions, biopolymers, 
superfluids, liquid crystals, alloys, super- 
conductors, and ferromagnetic metals 
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ments and the same multiplication table 
are essentially identical. The enumera- 
tion of all abstract groups-which have 
been compared to the grin that remains 
when the Cheshire cat fades away-and 
the determination of their properties are 
the basic tasks of group theory. 

-A.L.H. 
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g g d f e a c b I _ _ _ _ _ : _ >4 
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Fig. 1. A finite group with eight elements. (Kenneth Smith] 
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all undergo phase transitions that are 
also classed as critical phenomena. If 
a nickel magnet is heated, its magneti- 
zation decreases until it abruptly 
vanishes at 354?C, the critical tempera- 
ture. At room temperature the crystal 
structure of a brass alloy composed of 
equal numbers of copper and zinc 
atoms is very regular, with atoms of 
the two metals located at alternate 
sites in a cubic lattice. But when the 
alloy is heated, the pattern becomes 
less regular, as measured by x-ray or 
neutron scattering, until it is completely 
destroyed at 466?C. Yet another 
example of a critical phase transition 
occurs in liquid helium. Below the 
critical temperature of - 271.0?C, 
helium can exist in a superfluid phase. 
But above that temperature the super- 
fluid, which has many unusual proper- 
ties, disappears. 

By about 1965 it was clear that the 
classical theories of phase transitions 
were inadequate to describe critical 
phenomena, and in the following years 
many theorists began to realize that 
different classes of critical behavior 
are related in ways that are essentially 
independent of the physical details of 
the different systems. While the critical 
temperatures of various systems depend 
on specific physical details, such as the 
strength of a molecular force or the 
interatomic spacing in a lattice, the 
qualitative aspects of critical behavior 
are apparently independent of those de- 
tails and constant, not only within 
classes of critical phenomena, but also 
from one class to another. 

For example, the difference in den- 
sity between liquid and gas-for water 
or any other liquid-decreases as the 
temperature approaches the critical 
temperature (T,) with the particular 
functional dependence (T - Tc) . The 
exponent p has been measured to be 
very nearly 1/3. The magnetization of 
nickel and the degree of order in brass 
approach zero with the same qualita- 
tive dependence on temperature, and 
again f8 is nearly /3. Furthermore, f 
is only one of the so-called critical 
exponents that seem to have the same 
values for many different classes of 
critical phenomena. Besides an ex- 
ponent to describe the coexistence of 
different components, the complete 
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