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Last month news of the apparent 
discovery of yet another sporadic 
group filtered through the mathemati- 
cal community. If confirmed, this 
mathematical entity would be one of 
only 21 known examples of the rare 
and still poorly understood class of 
finite groups known as sporadic. The 
discovery would also be the sixteenth 
such group found since 1965, reflect- 
ing a burst of activity in finite group 
theory that has turned up new sporadic 
groups almost every year and has 
resulted in several other important de- 
velopments in the past decade. Among 
the most intriguing of these develop- 
ments, although its importance is still 
uncertain, is the demonstration of an 
intimate connection between some 
sporadic groups and error-correcting 
codes of the type used to transmit 
binary information reliably in, distor- 
tion-prone environments. 

Sporadic groups play something of 
the role of the joker in finite group 
theory, which has as a basic goal de- 
termination of the structure of all finite 
groups. In classifying these groups 
mathematicians employ the concept of 
a simple group, one which, in some 
sense, cannot be decomposed into sub- 
groups. Simple groups thus constitute 
the building blocks out of which all 
finite groups are constructed. There are 
two well-known classes of simple 
groups: alternating groups, consisting 
of all even permutations of n objects, 
and groups of the Lie type, which have 
strong geometrical analogies. Both 
classes have an infinite number of sim- 
ple groups (each of which has a finite 
number of elements), but these groups 
occur in regular patterns and their 
properties have been extensively 
studied. Most simple groups belong to 
one of these two classes. The major 
exceptions are the sporadic groups. 

Sporadic groups, as their name im- 
plies, do not seem to follow any 
regular pattern. If there should turn out 
to be an infinite number of such anom- 
alous groups, then hopes of classify- 
ing all finite groups would have to be 
discarded. Hence, there is considerable 
interest in sporadic groups and in the 
possibility that they are either limited 
in number or ordered in some way not 
yet perceived. 

Most of the known sporadic groups 
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were found almost by accident in the 
course of trying to establish basic 
theorems about finite groups. Con- 
sidering the uncertainties still sur- 
rounding sporadic groups, some re- 
markably general theorems have been 
proved. In 1963, for example, J. 
Thompson, then at the University of 
Chicago, and W. Feit of Yale showed 
that essentially every simple group has 
an even number of elements. Other 
investigators, trying to prove similar 
theorems, have on occasion run into 
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difficulties that, on further examina- 
tion, turned out to be evidence of a 
new sporadic group. 

The most recently discovered spo- 
radic group was found by M. O'Nan 
of Rutgers University. He was trying 
to classify a particular family of per- 
mutation groups. In the process, he 
encountered a configuration that could 
not be explained in terms of known 
simple groups or in terms of general 
theorems. O'Nan worked out the struc- 
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One of the simplest and most useful algebraic structures is the group, study 

of which dates back to 1830. The concept is not only of mathematical interest, but 
has found application in fields ranging from quantum mechanics to crystallog- 
raphy. Despite their long history and many uses, groups remain a remote concept 
to many. Since the accompanying two articles concern advances in group theory 
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has found application in fields ranging from quantum mechanics to crystallog- 
raphy. Despite their long history and many uses, groups remain a remote concept 
to many. Since the accompanying two articles concern advances in group theory 
and its applications, this short summary 
groups is offered as a convenient primer. 

A group is a set of elements together 
with an operation which satisfies the 
four axioms shown in Table 1. The ele- 
ments (denoted a, b, . . .) may be any 
sort of object or transformation, includ- 
ing numbers, vectors, physical motions, 
and geometric spaces. The operation 
(denoted by *) may be algebraic or 
geometric, including addition, matrix 
multiplication, and rotation. In some 
instances what is of interest is a semi- 
group (a set of elements that obey all 
but one of the axioms; a semi-group 
may not have inverse elements, for ex- 
ample. 

A familiar example of a group is the 
set of all integers (. . .-1, 0, 1, 2, . .) 
combined with the operation of addi- 
tion. Zero is the identity element and 
the inverse for an integer is its negative. 

Table 1. Group axioms. 
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Closure: for any elements a,b a*b is an 
element of the group 

Associative: (a*b)*c = a*(b*c) 

Identity: there is an element I such that 
I*a = a*I = a 

Inverse: for every element a there is an ele- 
ment a-1 such that a*a- -= a-*a = I 
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In this case, there is an infinite number 
of elements in the group. 

Another common group is the set of 
all (nonsingular) n by n matrices with 
matrix multiplication as the group op- 
eration-the group known as the full 
linear group of dimension n. Not only 
is there an infinite number of elements 
in each group, but there are an infinite 
number of such groups. 

An example of a finite group is given 
in Fig. 1. The elements of the group 
are the possible ways of rotating a 
square so as to change the relative ori- 
entation of its vertices from one of the 
eight possible positions to another; these 
eight motions, including the option of 
no motion at all (the identity element), 
comprise the group. Combination of 
two successive rotations, for example a 
followed by d, is the group operation 
(a*d is equivalent to g, another element 
of the group, as required by the closure 
axiom). For this paricular group, the 
operation is not commutative and the 
order in which it is applied makes a dif- 
ference (a*d = g = d*a). Inverse ele- 
ments exist for all members of the 
group-d*d = I, for example. 

The operations for a group may be 
summarized in a group multiplication 
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Table 1. Known sporadic groups. 

Group Discovered Number of elements 

Mnl Mathieu (1860) 7,920 
Mi2 Mathieu (1860) 95,040 
M2 Mathieu (1861) 443,520 
M23 Mathieu (1861) 10,200,960 
M24 Mathieu (1861) 244,823,040 
Ja Janko (1965) 175,560 
HaJ Hall, Janko (1967) 604,800 
HJM Higman, McKay, Janko (1968) 50,232,960 
HHM Held, Higman, McKay (1967) 4,030,387,200 
HiS Higman, Sims (1967) 44,352,000 
McL McLaughlin (1968) 898,128,000 
Suz Suzuki (1967) 448,345,497,600 
Co1 Conway (1968) 4,157,776,806,543,360,000 
Co2 Conway (1968) 42,305,421,312,000 
Co, Conway (1968) 495,766,656,000 
Fi22 Fischer (1969) 64,561,751,654,400 
Fi, Fischer (1969) 4,089,470,473,293,004,800 
Fi2t Fischer (1969) 1,252,205,709,190,661,721,292,800 
LyS Lyons, Sims (1971) 51,765,179,004,000,000 
R Rudvalis (1972) 145,926,144,000 
O'N(?) O'Nan (1973) 460,815,505,920 

tural properties of what he suspected 
was an unknown group, and computed 
that it would have about 460 billion 
elements. He was then able to con- 
struct what is known as a character 
table-a table of functions associated 
with the matrix representation of the 
group. These functions amount to the 
ultimate arithmetic objects associated 
with a finite group. In this instance, 
there turned out to be 30 functions or 
characters associated with the group. 

Although most group theorists ac- 
cept calculation of a character table as 
strong evidence that a group really 
exists, definite proof requires the ex- 
plicit construction of the group itself- 
essentially, the construction of a multi- 
plication table for the group (see box). 
For groups as large as the O'Nan 
group, doing the job by hand is out 
of the question. Sophisticated methods 
of constructing new groups by means 
of computers have been developed, 
however, and C. Sims of Rutgers is 
now working on the new group. 

Sporadic groups have some surpris- 
ing properties. For one thing, many of 
them are very large (Table 1). The 
Fischer group F24, for example, has 
more than 1024 elements. According to 
A. Thaler of the mathematics section 
of the National Science Foundation, 
numbers of this magnitude play no sig- 
nificant role in any other part of mathe- 
matics. 

Even more startling is the connec- 
tion between sporadic groups and one 
type of error-correcting code. Because 
these codes allow data obscured by 
noise to be reconstructed, they have 
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found practical applications ranging 
from storage of irreplaceable informa- 
tion on magnetic tape to transmission 
of data between the Mariner spacecraft 
and Earth. There are many types of 
error-correcting codes, of which one 
example is the Golay code used in 
certain military applications. 

In the (23,12) Golay code, each 
segment of a coded message consists 
of 23 binary bits of which 12 contain 
information to be transmitted and 11 
are redundant. Because of the pattern 
of original and redundant information 
within the coded message, as many as 
three separate transmission errors per 
segment can be detected and corrected 
during the decoding process. Mathe- 
matically, error-correcting codes can 
be described as a subspace of a vector 
space-in this instance a 12-dimen- 
sional subspace of a 23-dimensional 
vector space. (A vector space can be 
thought of as a set of elements that 
combine in the same manner as ordi- 
nary vector addition.) The code sub- 
space has associated with it a finite 
group, known as the automorphism 
group, which is composed of all the 
(nonsingular) linear operations on the 
vector space which leave the code sub- 
space unchanged. Remarkably, the 
automorphism group of the (23,12) 
Golay code is a sporadic group, the 
fourth Mathieu group M23. 

The connection between codes and 
sporadic groups became even more in- 
teresting when John Conway of Cam- 
bridge University in England investi- 
gated a generalized version of the 
Golay code in 24 dimensions. He 

found that the automorphism group of 
this code contained three new sporadic 
groups (Col, Co2, and Co3). More- 
over, the first of these groups, Col, 
contained 12 of the 20 known sporadic 
groups as subgroups. This unexpected 
development raises the possibility that 
sporadic groups are not really sporadic, 
that there is some underlying order- 
although group theorists are still very 
uncertain on this point. 

Unlike most of the sporadic groups 
found since 1965, the Conway groups 
were discovered as the result of re- 
search into the properties of error- 
correcting codes. These codes have 
strong geometric analogies, for exam- 
ple to the problem of packing unit 
spheres in n dimensions. In 24 dimen- 
sions, it is possible to pack extremely 
densely, so that in the configuration 
Conway studied any given sphere 
touches 196,560 others. Designing a 
good code (one which can correct as 
many errors as possible) is equivalent 
to picking a subset of these spheres in 
such a way that they are as far apart 
from each other as possible. The re- 
sulting configuration (the geometrical 
analog of the desired code) turns out 
to be very symmetrical, and hence to 
have a large symmetry group. Accord- 
ing to this line of reasoning, therefore, 
a close connection between groups and 
codes is not too surprising. What is 
still unexplained, however, is why in 
a few cases the groups are of the 
sporadic type. 

Mathematicians have long known 
that there is something special about 
24-dimensional phenomena-what one 
group theorist calls "the miracle that 
happens in 24 dimensions"-and it 
may be that this accounts for the exist- 
ence of the Conway groups and for the 
appearance of other sporadic groups 
as subgroups of Co1. In any case, in- 
vestigations of error-correcting codes 
in still higher dimensions (48 and 72) 
have so far failed to turn up any new 
sporadic groups or any further evi- 
dence of an ordered relationship among 
these exceptional groups. Nor has an 
understanding of the connection be- 
tween codes and groups led to the 
construction of improved error-correct- 
ing codes of any commercial signifi- 
cance. But sporadic groups are closely 
tied to the central problem in finite 
group theory, and the issue of whether 
they are accidents or part of a pattern 
is likely to be of increasing interest to 
group theorists as more of these some- 
what curious mathematical entities are 
discovered.-ALLEN L. HAMMOND 
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