
Stochastic Generation of Regular Distributions 

Abstract. A new class of models is proposed to describe the dynamic processes 
leading to the establishment of regular spatial patterns of structures in natural 
systems. Simple mathematical arguments are used to compute the saturating densi- 
ties of the distributions, and these results are verified by computer simulation of 
model systems. 

A regular spatial distribution of 
structures can be generated by a process 
of random structure initiation followed 
by locally spreading inhibition which 
prevents new structure formation in an 
ever widening region around each struc- 
ture once it has formed. Despite the 
widespread occurrence of regular dis- 
tributions, and their importance in such 
diverse fields as metallurgy (1), cell 
biology (2), developmental biology (3), 
ecology (4), and geography (5), model 
systems in which there is an interval, 
due to such processes as growth or 
transport, between the time when the 
structure is formed and the time when 
the surrounding inhibitory field is es- 
tablished have not been carefully 
studied. Here, I compute the saturating 
densities for systems of random struc- 
ture initiation in which inhibitory fields 
are transmitted either with a linear 
velocity or by diffusion transport. 

Consider a one-dimensional, initially 
homogeneous system of length L, in 
which no structures are present, but in 
which random fluctuations, localized in 
space, of sufficient magnitude to initiate 
structure formation, are occurring at a 
rate F(1-1t-1), where the symbols in 
parentheses indicate that the rate is 
inversely proportional to length and 
time. Once a structure is formed, it 
remains localized and inhibits com- 
pletely new structure formation at all 
points lying closer than a distance 
s = lv(t - to), where to is the time of 
formation of the structure and v(lt-1) is 
the velocity of spreading of the inhibi- 
tory field. New structure formation pro- 
ceeds outside the inhibitory fields of 
established structures at the rate F. At 
any time the number of structures is 
designated N, the density n = N/L, and 
the length available for new structure 
formation 0L. The density when new 
structure formation ceases, n* -= N/L, 
is called the saturation density. If we 
consider the limit L-->o, and average 
over a large number of trials to an 
initially homogeneous system at fixed 
F and v, the values of the dynamic 
variables, n and 0, will be centered 
around single most probable values as 
a function of time, and equations giv- 
ing the interdependence of these 
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average variables can be derived (6). 
The rate at which new structures are 

formed is proportional to the available 
length in which no inhibitory fields are 
present, so that the density increase is 
given by 

dn 
- 

dt 

Ff (1) dt 
For low densities, at which the inhibi- 
tory fields of neighboring structures do 
not overlap, 0 will decrease at the rate 
2nv. As the density nears the saturating 
density, and neighboring fields begin to 
overlap, the rate of decrease of 0 
diminishes. This decrease may be de- 
scribed by a monotonically decreasing 
function g(n/n*) which depends only 
on the ratio (n/n*), such that 

d 
--2nvg (2) 

where 

g(O) - 1 g(l) - 0 (3) 
Equations 1 and 2 can be combined 
to form the single differential equation 

dn 
_-F(4) dq 2nvg 

which can be immediately integrated, 
subject to the boundary conditions 

n(l) = 0 q(0) -1 
z(0) = n* 0^(n') - 0 

to give 

n*-k (F) (6) 

where k is a constant depending on the 
function g. Since g is equal to unity 
for a wide range of low densities, but 
decreases rapidly to zero as the density 
approaches the saturation density, we 
assume it can be approximated by the 
expression, 

g n \m 

n_1--( 1>) (7) 

where we anticipate that in will be 
larger than 1. When Eq. 7 is sub- 
stituted in Eq. 4, and the integrations 
are performed, we find 

k-= (m+2\1/2 \ 2m (8) 

Provided m is larger than 1, effective 

limits 0.707 < k < 1.225 can be 
placed on k. 

The simple functional dependence 
displayed in Eq. 6 can be confirmed 
from a dimensional analysis of the 
model system. Consider a system of 
physical dimension d and volume V(ld), 
in which fluctuations are occurring at a 
rate F(1-at-1) and the inhibitory field 
spreads at a velocity v(lt-1). Since N* 
is a dimensionless number, the principle 
of dimensional homogeneity requires 
that it must be some function of dimen- 
sionless variables (7). The model system 
under consideration is completely spe- 
cified by three variables, F, v, and V 
and there is only one way these vari- 
ables can be combined to make a 
dimensionless number. This number, 
designated K, is given by 

d 

F d+ I 
K () V (9t 

so that 

N =- f(K) (10) 

Now, as the volume increases at con- 
stant F and v, the number density per 
unit volume will converge to some 
constant value, and consequently for 
both N* and V large, N* must display 
a linear dependence on V. This, in con- 
junction with Eq. 10, uniquely deter- 
mines N*, 

d 

N* = p\dFd 
1kV ^= (^ v (11) 

where kd is a constant depending on 
the dimension of the system. Equation 6 
follows at once for d = 1. 

A computer simulation was devised 
to empirically test Eq. 6. Consider a 
one-dimensional system for which F, v, 
and L have been specified. The length 
is subdivided into M compartments of 
length Ax, and a time iteration At is 
then determined, so that 

MAx = L At x 
v (12) 

The number of structure forming fluc- 
tuations, initially occurring in the whole 
system in time at, is FLAt. Provided 
the number of compartments is very 
much larger than the number of fluc- 
tuations in At, the probability p of hav- 
ing a single structure formed in any 
one compartment in time At is 

P 
FL FAAt A (13) 

and the probability of having two struc- 
tures formed in a compartment will be 
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negligible. The iteration length, Ax, 
must be chosen sufficiently small that 
the inequality in Eq. 13 is satisfied. An 

initially empty system of M compart- 
ments is then considered. For each 

compartment, for each time iteration, a 
random number 0 c r L 1 is generated. 
If r L p in a compartment, a new struc- 
ture is formed in that compartment; if 
r > p nothing happens. Once a struc- 
ture is formed it acts as a center of 
an inhibitory field which moves outward 
one new compartment at each time 
iteration. At subsequent time iterations, 
in compartments in which there is 
neither a structure nor an inhibitory 
field, random structure initiation pro- 
ceeds as before. Substituting Eqs. 8, 12, 
and 13 into Eq. 6, we find the ex- 

pected number of structures for this 
discrete representation of the continuous 
system 

N = ( 2+ )P) M (14) 

In Fig. 1 we display the average num- 
ber of structures formed over 40 trials 
to systems of 1000 and 2000 compart- 
ments. The straight line, a least squares 
fit to a linear equation, has a value of 
1.85 for the y intercept and a slope of 
0.830 (this gives m in Eq. 14 equal to 

5.3), with a standard error of the esti- 
mate equal to 1.22. The deviation from 
zero at the origin arises because Eq. 14 
is valid only where both N* and M are 

large. As the right-hand side of Eq. 14 
becomes smaller than one, the expected 
interparticle spacing becomes greater 
than the length of the system. However, 
if the right-hand side of Eq. 14 remains 

greater than zero, a single structure 
must always be formed, leading to a 
finite discontinuity at the origin in Fig. 
1. 

In Fig. 2 we display two measures 
which can be used to characterize devia- 
tions from randomness: the variation of 
the expected number of structures 
around N* (Fig. 2a), and the pair cor- 
relation function (the number density 
at distance R from a structure divided 

by the mean number density) (Fig. 2b). 
We compare these measures for the 
model system with p = .02 and M = 

100 (N* =12.1) with the theoretical 
values for a random system of 100 

compartments, which is generated by 
assuming that the probability of having 
a structure in each compartment is in- 

dependent of occupation of neighbor- 
ing compartments, and is equal to 
N*/100 .121. In the model system 
there is a striking sharpening of the 
distribution (standard deviation 2.06 
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Fig. 1. Mean number of structures formed 
as a function of p'2M for the model 
system described in the text. Each point 
represents an average of 40 trials to sys- 
tems with M= 1000 (circles) and M = 
2000 (squares). The straight line is a 
least squares fit to a linear equation. 

compared with a theoretical 3.25 for 
the binomial distribution). There is also 
strong local inhibition of structures in 
the immediate region surrounding a 
structure already formed, although sub- 
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Fig. 2. Comparison of measures used to 
characterize deviations from randomness 
for the model system averaged over 300 
trials with p = .02 and M = 100 (solid 
line), and the theoretical values for a 
randomly generated system at the same 
average density (dashed line). (a) The 
probability distribution, P(N), as a func- 
tion of N. The theoretical curve is the 
binomial distribution. (b) The pair corre- 
relation function, X(R), as a function of 
R. The 95 percent confidence limits for 
most of the points is indicated in the 
center of the figure. The values of '4(R) 
near the origin have a smaller variance 
and the confidence limits have been in- 
dicated. 

sidiary peaks in the correlation function, 
such as are found in liquids, are not 
present. 

The technique of 'dimensional anal- 
ysis, used to confirm Eq. 6, can be 
readily extended to predict the func- 
tional dependence of N* for cases in 
which the inhibitory field follows dif- 
ferent dynamics. For example, if ran- 
dom fluctuations occur as above, but 
the inhibitory field is transmitted by a 
substance which diffuses with diffusion 
coefficient D(12t-1) and inhibits com- 
pletely new structure formation if it is 
present at a concentration greater than 
a predetermined threshold, the ex- 
pected number of structures will be 

d 

Nb - ka'/ 
F \d+2 

d (D ) V (15) 

a result which has also been confirmed 
by computer simulation for d = 1 (8). 

The models discussed here must be 
distinguished from the better studied, 
mathematically simpler systems in 
which an initially homogeneous system 
becomes everywhere unstable with re- 
spect to infinitesimal fluctuations of 
finite wavelength (9). The latter systems 
will be expected to give a more regular 
distribution of structures than those en- 
countered here, but this difference in 
regularity cannot be quantitatively 
characterized at present (10). The 
models under consideration more closely 
correspond to systems in which there is 
random sequential addition of structures 
of fixed size to an initially homogeneous 
field. Although there is a rich theoreti- 
cal literature analyzing these systems 
(6, 11), these models do not represent 
the dynamic properties of the inhibi- 

tory fields. A comparison of the natur- 

ally occurring distributions of structures 
and the distributions resulting from the- 
oretical models should be useful in 
characterizing the dynamic processes 
leading to the regular distributions 
found in nature. 
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The successful installation of a geo- 
physical station at the Taurus-Littrow 
landing site of the Apollo 17 mission 
marked the culmination of an exciting 
period of manned lunar exploration and 
vastly improved our knowledge of the 
lunar interior. Before the Apollo 17 
mission there was a surprising gap in 
our knowledge concerning the nature 
of the upper 10 km of the lunar crust 
because of the absence of pertinent 
seismic travel time data at distances 
closer than 30 km. Travel times of seis- 
mic waves are inverted to determine 
the seismic velocity structure and pro- 
vide the direct means of probing the 
lunar interior. 

The seismic velocity in the moon was 
known to increase rapidly from values 
of 100 to 300 m/sec in the upper 100 
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Fig. 1. Travel times of seismic P-wave 
pulses las a function of distance for Apollo 
17 explosive charges and the LM impact. 
The data points defining the 250-m/sec 
line are omitted for brevity. The travel 
time for explosive package 1 (EP1) was 
corrected for propagation delay through a 
large crater, Camelot, and the LM impact 
travel time was corrected for an elevation 
effect. 
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m to a value of about 6 km/sec at a 
depth of 15 to 20 km. Even though the 
seismic velocity variation was believed 
to be a smooth increase with depth it 
was surmised (1) that such a rapid in- 
crease of velocity (approximately 2 
km/sec per kilometer) could not be 

explained solely by the effect of in- 
creasing pressure on dry rocks with 
macroscopic and microscopic cracks or 
by the self-compression of any granular 
rock powder. 

Laboratory velocity measurements on 
returned lunar soils and on terrestrial 
sands and basaltic ash (2) have indi- 
cated velocity-depth gradients of 0.4 to 
0.8 km/sec per kilometer, but such 
gradients occur only to pressures of 
about 50 bars (corresponding to a lunar 
depth of about 1 km). An examination 
of these experimental data led to the 
inference that compositional or textural 
changes must be important in the upper 
5 km of the moon (1). 

The purpose of the Apollo 17 lunar 
seismic profiling experiment was to re- 
cord on a triangular array of four 
seismometers the vibrations of the lunar 
surface as induced by explosive charges, 
the thrust of the lunar module (LM) 
ascent engine, and the crash of the LM 
ascent stage. 

Strong seismic signals were recorded 
from the detonation of eight explosive 
charges, which were armed and placed 
on the lunar surface by the Apollo 17 
crew at various points along the tra- 
verses. The weights of the explosive 
charges ranged from 0.06 to 2.7 kg. 
Recording of these signals generated 
seismic travel time data in the distance 
range from 0.1 to 2.7 km. 

One of the more significant events 
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One of the more significant events 

of the Apollo 17 mission was the re- 
cording of the seismic signal from the 
LM ascent stage, which struck the lunar 
surface 8.7 km southwest of the landing 
site in the highlands of the South Mas- 
sif. The seismic signals from this impact 
were observed at a greater depth of 
penetration than could be achieved 
solely with the use of small explosive 
charges. The impact signal was similar 
in character to previous impact signals, 
having an emergent beginning and a 
long duration (3, 4). 

The observed travel times for the 
detonation of the explosive charges can 
be combined with the observed travel 
time for the LM impact to provide in- 
formation about the seismic velocity to 
a depth of several kilometers beneath 
the Apollo 17 landing site. Since the 
LM impacted at an elevation of 1.2 
km above the recording seismometer 
array the LM travel time has been ad- 
justed to the same reference elevation 
as the geophone array. The correction 
is small and decreases the observed 
time of 5.75 seconds by 0.18 second. 
Travel time data from the LM impact 
and the explosive charges are plotted 
against distance in Fig. 1. Three P-wave 
(compressional wave) velocities are 
represented in the travel time data: 250, 
1200, and 4000 m/sec. There is some 
uncertainty in the apparent velocity of 
4000 m/sec determined primarily by 
the LM impact data point at a distance 
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results compared to earlier lunar models 
[models 1 and 2 (4)] and to velocities for 
lunar rocks and terrestrial sands measured 
in the laboratory as a function of pressure. 
Lunar rocks are identified by sample 
numbers. 
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Apollo 17 Seismic Profiling: Probing the Lunar Crust 

Abstract. Apollo 17 seismic data are interpreted to determine the structure of 
the lunar crust to a depth of several kilometers. Seismic velocity increases in a 
marked stepwise manner beneath the Taurus-Littrow region at the Apollo 17 
site. A thickness of about 1200 meters is indicated for the infilling mare basalts 
at Taurus-Littrow. The apparent velocity is high (about 4 kilometers per second) 
in the material immediately underlying the basalts. 
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