
ing this period of development. From 
the foregoing results, the biosynthetic- 
metabolic pathways for the molting 
hormones during this stage of embry- 
onic development can best be expressed 
as follows: 

a-ecdysone (1) -> 26-hydroxyecdysone (4) 

20-hydroxyecdysone (2) -- 
20,26-dihydroxyecdysone (3) 

In the egg, a-ecdysone serves as the 
common precursor for both routes; but 

clearly the pathway to 26-hydroxy- 
ecdysone is the principal one as indi- 
cated by the strikingly large quantities 
of this hormone, whereas the conver- 
sion of a-ecdysone to 20-hydroxyecdy- 
sone is a minor pathway. However, 
during pupal-adult development a- 

ecdysone serves as a precursor for 20- 

hydroxyecdysone, which at this stage is 
the predominant molting hormone (4, 
8). This has been substantiated in 
studies with the labeled ecdysone pre- 
cursor 22,25-dideoxyecdysone which is 

efficiently converted to the three insect 

ecdysones (1, 2, 3) during both pre- 
pupal and pupal-adult development (5, 
11). However, during larval develop- 
ment in the hornworm, this same ecdy- 
sone precursor is principally metabo- 
lized to a number of ecdysone analogs 
which lack the hydroxyl group at C-22 

(6). 
On the basis of the chemical and 

biochemical information on the molt- 

ing hormones in the tobacco horn- 
worm, then, different biosynthetic- 
metabolic pathways as well as quanti- 
tative and qualitative differences in the 

ecdysones occur in different develop- 
mental stages of this insect. Conse- 

quently, different ecdysones could 
function at different stages of insect 

development, and the qualitative nature 
of the molting hormones could well 
dictate the type of molt. If this is true, 
certain of the current concepts con- 

cerning the hormonal control of molt- 

ing and metamorphosis in insects may 
require a reevaluation and revision. 
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example, evidence now suggests that 
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transmission, thereby modulating cho- 
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this evidence is the observation that low 
concentrations of dopamine increase 
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may mediate the inhibitory effect of 

norepinephrine on Purkinje cells of the 
cerebellum (3), a tissue known to con- 
tain a norepinephrine-sensitive adenyl- 
ate cyclase (4). 

It has been suggested that octopa- 
mine (5), which is found in both verte- 
brate and invertebrate nervous systems, 
may, in some species, function as a 
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Fig. 1. Effect of octopamine on cyclic AMP accumulation in (A) homogenates and 
(B) intact tissue preparations of cockroach thoracic ganglia. (A) Effect of various 
concentrations of dl-octopamine, dopamine, and serotonin on adenylate cyclase activity 
in homogenates. The control activity, per milligram of protein, in the absence of added 
biogenic amine was 10.0 ? 1.5 pmole/min. (B) Effect of 250 ysM dl-octopamine and 
10 mM theophylline, alone and in combination, on the accumulation of cyclic AMP in 
intact hemiganglia. The control was 17.7 + 2.7 pmole per milligram of protein. The 
values shown in both (A) and (B) are the means and ranges for two to three replicate 
samples, each assayed in duplicate. 
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Octopamine-Sensitive Adenylate Cyclase: Evidence for 

a Biological Role of Octopamine in Nervous Tissue 

Abstract. An adenylate cyclase that is activated specifically by very low concen- 
trations of octopamine has been identified both in homogenates and in intact cells 
of the thoracic ganglia of an insect nervous system. This enzyme appears to be 
distinct from two other adenylate cyclases present in the same tissue, which are 
activated by dopamine and by 5-hydroxytryptamine, respectively. The data raise 
the possibility of a role of octopamine-sensitive adenylate cyclase in the 
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neurotransmitter (6). Because no direct 

experimental evidence has been re- 
ported for such a function of octopa- 
mine, it seemed of interest to know 
whether an adenylate cyclase specifi- 
cally sensitive to octopamine could be 
demonstrated in neural tissue. By anal- 

ogy with the catecholamines, the exist- 
ence of such an octopamine-sensitive 
adenylate cyclase could be considered 
to provide some experimental support 
for the possibility that octopamine could 
act as a neurotransmitter. In the fol- 

lowing experiments we describe the 
identification of such an octopamine- 
sensitive adenylate cyclase in an insect 
nervous system. We have found that 
this enzyme is stimulated specifically by 
extremely low concentrations of octopa- 
mine, and that it appears to be distinct 
from two other adenylate cyclases pres- 
ent in the same tissue, which are acti- 
vated by dopamine and by 5-hydroxy- 
tryptamine (serotonin), respectively. 

For our studies, we used the thoracic 

ganglia of the cockroach, Periplaneta 
americana, since the enzymes necessary 
for octopamine synthesis are known to 
be present in this invertebrate (7) and 
the application of exogenous octopa- 
mine can lead to the activation of 

phosphorylase in this animal's ventral 
nerve cord (8). Specifically, we studied 
the effects of octopamine and other 

biogenic amines on the accumulation 
of cyclic AMP in tissue homogenates 
and intact preparations of these ganglia. 
Figure 1A shows the effect of dl-octo- 

pamine on the adenylate cyclase activity 
of ganglion homogenates (9). Stimula- 
tion of enzyme activity was observed at 
concentrations of octopamine as low 
as 0.03 [kM. The concentration of octo- 

pamine necessary for half-maximum 
activation (Ka) was about 1.5 tiM, and 
that for maximum stimulation (400 
percent of control) was about 30 tM. 
In contrast, concentrations of octopa- 
mine as great as 250 ,.M had no effect 
on endogenous phosphodiesterase activ- 
ity (10), indicating that the observed 
increases in cyclic AMP were due to 
stimulation of adenylate cyclase and not 
to inhibition of phosphodiesterase. 

Dopamine, serotonin, and L-norepi- 
nephrine, substances known to occur in 
insect nervous tissue (11), were also 
tested for their effect on adenylate 
cyclase activity. Dopamine produced 
less stimulation than octopamine but 
had a low Ka (2 ,uM) (Fig. 1A). 
Serotonin also caused a comparatively 
small maximal stimulation of adenylate 
cyclase activity (170 percent of control 
at 25 uM), but it, too, was effective at 
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conversion of tyramine to octopamine 
are stimulated by extracts from cock- 
roach ganglia and hemolymph (7), and 
that octopamine itself is present in high 
concentrations in the thoracic nerve 
cord of the lobster (6). Unfortunately, 
the absolute levels of octopamine are 
not known for the thoracic ganglia of 
the cockroach. In addition, although it 
has been suggested that octopamine 
might function as a primary neuro- 
transmitter in those invertebrate species 
in which it is found in high concentra- 
tions (6), there have been as yet no 
reported investigations of possible elec- 
trophysiological effects of octopamine 
on invertebrate nerve cells. It is known, 
however, that norepinephrine and dopa- 
mine, both of which increased gangli- 
onic cyclic AMP in our experiments, 
are excitatory when applied to neurons 
of the cockroach abdominal ganglia 
(15). Because ootopamine also increased 
cyclic AMP in intact ganglia, it will be 
important to determine whether this 
phenolic amine has any effects on the 
electrical activity of nerve cells in this 
or similar ganglia. In this regard, it is 
of interest that octopamine-stimulated 
adenylate cyclase activity, in our exper- 
iments, was 2.2-fold higher in cock- 
roach thoracic ganglia themselves than 
in the interganglionic nerve connectives 
(data not shown), suggesting that the 

enzyme may be localized more in nerve 
cell bodies and synaptic areas than in 
axons (of which the connectives are 

composed). 
It has been shown (8) that octopa- 

mine can activate phosphorylase in 
cockroach nerve cord, and it was sug- 
gested that this glycogenolytic effect of 

octopamine in insects might be medi- 
ated through an increase of cyclic AMP. 
If the activation of phosphorylase by 
octopamine in the cockroach is, in fact, 
mediated through an increase in cyclic 
AMP, a possibility supported by our 

results, this would not rule out a pos- 
sible role (6) of octopamine as a neuro- 
transmitter. Indeed, our demonstration 
in invertebrate ganglia of an adenylate 
cyclase specifically sensitive to low con- 
centrations of octopamine provides a 

possible mechanism by which this phe- 
nolic amine could be involved both in 
the regulation of carbohydrate metabo- 
lism as well as in the physiology of 

synaptic transmission. 
JAMES A. NATHANSON 
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Activation of Hemoglobin C Synthesis in Sheep Marrow Culture 

Abstract. Erythropoietin preferentially stimulates hemoglobin C synthesis in 

suspension cultures of marrow cells from sheep homozygous for hemoglobin A; 
the amount of synthesis is dependent on the dose of erythropoietin and is blocked 

by antiserum to erythropoietin. The results provide the first in vitro evidence that 

erythropoietin mediates the hemoglobin A -> C "switch" in sheep and indicate 
that bone marrow cultures may be used to investigate the mechanisms involved 
in the preferential gene activation characteristic of the hemoglobin A -> C system. 
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Goats and sheep possess the unusual 
property of synthesizing a new hemo- 
globin under the influence of a variety 
of erythropoietic stimuli (1). Thus, when 
sheep homozygous for hemoglobin A 
(Hb A) are made anemic, their hemo- 
globin type switches to C (Hb C) be- 
cause of the selective synthesis of ctc 

globin chains (2). No such alteration is 
seen in animals homozygous for hemo- 
globin B (Hb B). These alterations in 
hemoglobin synthesis, under the influ- 
ence of external factors, are of particu- 
lar interest in that they provide a model 
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for study of the mechanisms involved in 
differential gene activation in higher 
organisms. While several lines of in 
vivo study have provisionally identified 
the switching factor as erythropoietin 
(ESF), investigation into the mecha- 
nisms of the switch has been limited by 
the size of the animal and the length of 
time for the effect to be seen. We 

report that the hemoglobin A -> C 
switch may be induced in vitro in sus- 

pension cultures of sheep marrow cells 
from animals with Hb A. 

Five healthy and hematologically 
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