
returning to normal Ringer solution, 
thus suggesting that sodium is the pre- 
dominant ion mediating the GABA and 
glutamic acid depolarizations. The 
GABA response usually returned within 
10 minutes of washing whereas the 
glutamic acid response often took much 
longer to return (approximately 1 
hour). 

In summary, we have treated the 
isolated spinal cord of the frog with 
magnesium in order to minimize syn- 
apltic activity and permit better investi- 
gation of the effects of putative trans- 
mitters on primary afferent terminals. 
Both GABA and glutamic acid in- 
creased the excitability of the terminals 
and concomitantly depolarized the dor- 
sal root. Furthermore, both bicuculline 
and picrotoxin antagonized the GABA- 
induced depolarizations but had little 
effect on either the glutamic acid or 
glycine responses. Since both bicucul- 
line and pictrotoxin attenuate the syn- 
aptically developed dorsal root poten- 
tial (3-5) and block GABA-mediated 
events elsewhere in invertebrate and 
vertebrate nervous tissue (5, 6), our 
evidence supports the hypothesis that 
GABA is the transmitter mediating pri- 
mary afferent depolarization (1). 

The investigation of the ionic mecha- 
nism(s) underlying the amino acid- 
induced depolarization of the dorsal 
root has provided evidence to support 
the hypothesis that sodium is the pre- 
dominant ion involved in these re- 
sponses (5). This sodium-dependent, 
GABA-induced depolarization of pri- 
mary afferent terminals differs from its 
well-established action as a chloride- 
dependent inhibitory transmitter and 
suggests that GABA may mediate syn- 
aptic events by utilizing different ions 
at different sites. 

Note added in proof: Since this 

report was submitted for publication 
Davidoff has reported an irreversi- 
ble, specific antagonism of dorsal root 
potentials and both GABA-induced in- 
creases in primary afferent excitability 
and depolarizations of the dorsal root 
(17). This evidence complements 
our report and further strengthens the 
notion that GABA or some closely re- 
lated analog is the natural transmitter 
mediating the presynaptic inhibition. 
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Depression and Later Enhancement of the Critical Flicker 

Frequency during Prolonged Monocular Deprivation 

Abstract. One eye was visually deprived for 1 day, and the critical flicker fre- 
quency in the other eye was determined at the start of the deprivation period 
and then at intervals of 3, 6, 9, 15, and 24 hours. There was an initial depression 
in performance, followed by an enhancement effect. No significant changes in 
the critical flicker frequency were observed in the occluded eye at corresponding 
times; thus the depression-enhancement phenomenon is specific to the nonoccluded 
eye. 
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In 1923, Allen (1) reported that 3 
hours of monocular light deprivation 
produced a decrease in the critical 
flicker frequency (CFF) of the non- 
occluded eye, a result confirmed by 
Hollenberg (2). In contrast, we demon- 
strated (3) a negatively accelerating 

In 1923, Allen (1) reported that 3 
hours of monocular light deprivation 
produced a decrease in the critical 
flicker frequency (CFF) of the non- 
occluded eye, a result confirmed by 
Hollenberg (2). In contrast, we demon- 
strated (3) a negatively accelerating 

improvement in the CFF of the non- 
occluded eye during 1 week of monoc- 
ular deprivation, the first measurement 
being taken 8 hours after deprivation 
was begun and the remainder at daily 
intervals. Furthermore, a sizable after- 
effect in this eye was still present 1 

1045 

improvement in the CFF of the non- 
occluded eye during 1 week of monoc- 
ular deprivation, the first measurement 
being taken 8 hours after deprivation 
was begun and the remainder at daily 
intervals. Furthermore, a sizable after- 
effect in this eye was still present 1 

1045 



week after the removal of the black 
patch from the other eye. These two 
sets of results suggest that prolonged 
monocular deprivation may initially 
produce a depression of the CFF in the 
nonoccluded eye, and that the depres- 
sion is followed by an enhancement ef- 
fect of negatively accelerating magni- 
tude. We report that this hypothesis 
was tested and confirmed. 

Thirty male university students, all 
with normal vision, were divided into 
experimental and control groups, each 
containing 15 subjects. All subjects 
were required to live for 1 day in a 
large room (3.66 by 14.02 m), which 
was furnished with sofas, comfortable 
chairs, and study desks, and contained 
a radio, a television set, playing cards, 
and reading material. The mean ambient 
illumination, measured at desk height 
in eight different positions in the room, 
was 550 lu/m2. A washroom, a kitchen- 
ette, and sleeping quarters were ad- 
jacent to this furnished room. The sub- 
jects were confined to these apartment- 
like quarters in groups of three, two 
from one group and one from the other 
group. During the day spent in the 
room, each experimental subject wore 
a black patch over the dominant eye. 

The CFF determinations were made 
before the patch was put in place and 
then at intervals of 3, 6, 9, 15, and 24 
hours, the first measurement being made 
between 8:30 and 9:30 a.m. Subjects 
were permitted to sleep for approxi- 
mately 8 hours after completion of the 
15-hour test and were awakened 1 hour 
before the start of the 24-hour test (4). 
In order to control for possible effects 
of changes in blood sugar level on the 
CFF, each of the six determinations 
was made after the subject had eaten 
a meal or a snack that included a 
chocolate bar. 

Before the CFF was measured at each 
test period, the nonoccluded (nondomi- 
nant) eye of each experimental subject 
was dark-adapted for 15 minutes (the 
other eye was already covered by a 
patch). This duration was felt to be 
sufficient for testing with a small, cen- 
trally fixated visual target (4). The CFF 
was then taken from the nonoccluded 
eye only, since the presentation of a 
bright light to one eye can affect the 
CFF in the other eye (1, 2, 5). For 
each confirmed control subject, the 
CFF of the nondominant eye at each 
interval was determined after 15 min- 
utes of binocular dark adaptation. 

The stimulus consisted of a white 
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The CFF of the nonoccluded eyes 
shows an initial depression, as reported 
by Allen (1) and Hollenberg (2), a 
reversal toward the baseline level at 9 
hours, and an enhancement effect at 
24 hours (Fig. 1, top). On the other 
hand, the CFF of corresponding eyes 
of the confined controls does not change 
during the 24-hour session. An analysis 

15 24 of variance revealed a significant change 
over hours (F = 21.82, P < .001) and 

s in mean CFF a significant interaction effect (F = 
-d to 24 hours 20.29, P < .001). A series of two-tailed 

the nonoccluded t-tests comparing the relative perform- 
the experimental ances of the two groups of subjects at 
ndominant eyes the various time periods indicated that 
ttom) Measure- the decrease in the CFF at 3 and 6 
occluded (domi- hours, the reversal between 6 and 9 

hours, and the increase at 24 hours 
were all statistically significant (P's < 
.01). 

frequency con- . . . 
the fusion fre- An examination of the individual 

performance patterns of the 15 experi- resented mono-c- -esented monoc- mentals suggested the presence of two 
de modulating main types of "reactors" (Fig. 2). The 11 31.c), mount- first type, comprising a third of the 
andard viewing sample, showed a prolonged period of -no de 1202C). 

depression with the enhancement effect 
y the centrally appearing only at the 24-hour test, 10', a value as- while the second type exhibited a rela- 
ation. T-e ftick- tively brief period of depression (at 3 

(Grason-Stad- (Gsn-ta ttand 6 hours only), and then an en- 
hancement effect of progressively in- 

a -lamp currentt creasing magnitude. These two general 
response patterns may reflect possible 
differences in the degree of stress ex- 

j perienced by the experimental subjects 
Ieye .. resulting from the novelty of wearing 

. an eye patch. Although no measures 
of stress or affect were made, we felt 
that subjects of the first type were 
somewhat more apprehensive and com- 

- plained more often during the confine- 
- 
-15 
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^-4 ment period than did those showing 

the second type of response. 
y@e 1 _ To determine whether a similar type 

of depression-enhancement phenomenon 
could be shown in the occluded eye, 
we did a second experiment. In each 
of nine subjects, the dominant eye was 

15 P24 occluded for 1 day, and measurements 
were taken from this eye before the 

i individual sub- patch was put in place and then at 
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adapted since the black patch had not 
been applied.) There was no change in 
the CFF of the occluded eye at any 
time (Fig. 1, bottom). Thus, the de- 
pression-enhancement phenomenon is 
specific to the nonoccluded eye (4). 

Although numerous variables affect 
the OFF, it is difficult to understand 
how any of them can account for both 
our present and earlier (3) results for 
the nonoccluded eye. The unusual time 
course, together with the persistence of 
the phenomenon for many days, sug- 
gests the disturbance of some interoc- 
ular mechanism in the higher levels of 
the visual system. We believe that pro- 
longed monocular deprivation may be 
producing changes in certain areas of 
the primary sensory system, changes 
similar to the denervation supersensi- 
tivity that occurs in the higher neural 
centers after partial surgical deafferen- 
tation at lower levels of the central 
nervous system (6). For example, Spie- 
gel and Szekely (7) reported that le- 
sions in the posteroventral nucleus of 
the thalamus (relay nucleus for touch) 
are followed, after an initial period of 
depression of the somesthetic cortex, 
by a hyperexcitability of this region. 
[More than a century ago, Hall (8) 
observed that "the first effect of injury 
done to the nervous system is a dim- 
inution of its functions, whilst the 
second or ulterior effect is the augmen- 
tation of these functions."] Occlusion of 
one eye, therefore, may be producing 
a state of temporary partial deafferen- 
tation of the visual system, a condition 
that is reflected behaviorally in the 
production of our CFF phenomenon. 
However, in contrast to surgically in- 
duced deafferentation, this deafferenta- 
tion is functional, that is, it is produced 
by depriving the normal, intact orga- 
nism of some of its accustomed visual 
experience. 

This hypothesis is consistent with 
Sharpless's (9) revision of the law of 
denervation (6), which has as its main 
thesis that supersensitivity results from 
prolonged disuse of neural pathways. 
Sharpless states, "Disuse may be the 
result of drugs, privation of sensory 
experience, or, most commonly, injury 
produced by severance of nervous path- 
ways." Further, he says that supersen- 
sitivity is a compensatory process that 
occurs as a consequence of "a radical 
and sustained change in the level of 
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sions in the posteroventral nucleus of 
the thalamus (relay nucleus for touch) 
are followed, after an initial period of 
depression of the somesthetic cortex, 
by a hyperexcitability of this region. 
[More than a century ago, Hall (8) 
observed that "the first effect of injury 
done to the nervous system is a dim- 
inution of its functions, whilst the 
second or ulterior effect is the augmen- 
tation of these functions."] Occlusion of 
one eye, therefore, may be producing 
a state of temporary partial deafferen- 
tation of the visual system, a condition 
that is reflected behaviorally in the 
production of our CFF phenomenon. 
However, in contrast to surgically in- 
duced deafferentation, this deafferenta- 
tion is functional, that is, it is produced 
by depriving the normal, intact orga- 
nism of some of its accustomed visual 
experience. 

This hypothesis is consistent with 
Sharpless's (9) revision of the law of 
denervation (6), which has as its main 
thesis that supersensitivity results from 
prolonged disuse of neural pathways. 
Sharpless states, "Disuse may be the 
result of drugs, privation of sensory 
experience, or, most commonly, injury 
produced by severance of nervous path- 
ways." Further, he says that supersen- 
sitivity is a compensatory process that 
occurs as a consequence of "a radical 
and sustained change in the level of 
input to an excitable structure." This 
explanation of disuse of neural path- 
ways, with which we concur, has the 
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merit of bringing together our results, 
the increased cutaneous sensitivity that 
occurs in human subjects after pro- 
longed partial occlusion of the skin (10), 
and the various supersensitivity phe- 
nomena induced by surgery or by drugs. 
This explanation does not, however, 
adequately account for the presence of 
the OFF phenomenon in only one eye, 
nor does it indicate the specific neural 
locus of the interocular effect. Only 
future behavioral and electrophysiologi- 
cal research can provide satisfactory 
answers to these two problems. 

Finally, our results are important in 
two general respects. First, they indi- 
cate that the monocular deprivation 
technique may provide a new method 
of attacking the complex problem of 
the physiological mechanisms under- 
lying sensory isolation effects (11), an 
approach that can be used both in 
studies of humans and in electrophysio- 
logical studies in animals. Second, they 
suggest that many of lthe apparently 
contradictory results from isolation 
chamber studies (11), particularly those 
involving periods of 1 day or less and 
employing various sensory and percep- 
tual-motor measures, may be accounted 
for by differences in the duration of ex- 
perimental conditions. (The mosit com- 
monly used periods have been 3, 9, 12, 
and 24 hours.) As we have demon- 
strated, performance on the same mea- 
sure may be eilther impaired, improved, 
or not affected, the specific effect being 
dependent upon the duration of depri- 
vation. It has been assumed by most 
previous investigators in the sensory 
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After a subject observes a square- 
wave grating, the apparent contrast of 
an identical grating will be greatly re- 
duced (1, 2). A similar effect occurs 
when a half cycle of a grating-a dark 
bar-is presented and then presented 
again at a shorter duration (3). The re- 
duction in apparent contrast of a stim- 
ulus when it is presented after another 
stimulus is called a forward masking 
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deprivation area that this experimental 
variable is probably not too important 
and therefore can be ignored. This as- 
sumption is no longer valid. 
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of Manitoba, Winnipeg, Canada 
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effect. The stimulus that loses.apparent 
contrast is called the target; the other 
stimulus is called the mask. 

These masking effects have been tak- 
en as evidence that the human visual 
system contains neural populations that 
are selective for size and orientation 
and that lose sensitivity after prolonged 
stimulation. The psychophysical evi- 
dence suggests this: The effects attenuate 
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Gratings Mask Bars and Bars Mask Gratings: Visual 

Frequency Response to Aperiodic Stimuli 

Abstract. Gratings and bars produce unexpected mutual visual masking. A 
grating masks a bar much less than a bar masks a bar; and a bar masks a grating 
uniformly over the grating field. These effects suggest that neural populations 
selective for size and orientation may be involved in frequency analysis rather 
than in simple feature detection. 
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