
theta waves are largely absent fron 
the MEG of Fig. 2B; they were alsc 
absent from MEG'S (not shown here) 
taken at several other points around the 
head during the same sitting. At this 
time, without extensive EEG and MEG 
data taken from this subject, one car 
only speculate on the reason for this 
absence. Perhaps these theta waves are 
an example of the case, mentioned 
earlier, where there is an EEG voltage 
but no currents. On the other hand, 
there may be nonzero theta currents, 
but they would be symmetrically dis- 
tributed to give a canceled, zero exter- 
nal magnetic field. Such symmetrical 
currents can be produced, for example, 
by one or more dipole generators near 
the surface, each oriented with its axis 
perpendicular to the surface; in gen- 
eral, magnetic detection of the zero 
magnetic field from symmetrical cur- 
rents does not yield new internal in- 
formation since the symmetry can be 
found from exact EEG measurements. 
Whatever the reason for the absence of 
the theta waves from the MEG, Fig. 
2B suggests that the MEG can be sub- 
stantially different from the EEG. 

During the sitting in which Fig. 2B 
was recorded, a preliminary search was 
made for d-c in the brain before and 
during hyperventilation. There is some 
basis (1) for believing that d-c changes 
may accompany the delta waves, at 
about the same level, yielding an ex- 
ternal d-c field of about 5 X 10-8 gauss. 
The technique for the d-c search (8) 
consisted of looking for baseline shifts 
of the MEG while moving the subject's 
head up to and away from the detec- 
tor; the lower bandwidth limit of the 
MEG had been set at d-c. No d-c mag- 
netic field was detected to within the 
sensitivity of this measurement, which 
was somewhat less than 2 X 10-8 gauss. 
It is too early to interpret the apparent 
absence of d-c fields in this case. 

I believe the high-sensitivity detec- 
tion system used here shows promise 
both as a clinical and as a research 
tool for studying the brain. 
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of insulator. A battery is placed inside with 
each terminal connected to a hemisphere, 
along with a resistor and switch across the 
terminals so that a current flows through the 
resistor when the switch is closed. A voltage 
measurement on the surface will give the 
voltage difference of the hemispheres without 
giving information on the current flow 
through the resistor; magnetic measurement 
will, however, show whether the switch is 
open or closed. 

3. A simple, idealized example is a conducting 
sphere, say of salt water, with an internal 
ring concentric with the sphere consisting of 
a continuous distribution of generators closed 
on themselves so that a current flows in the 
ring. There will be no potential difference 
between any points on the surface but there 
will be an external magnetic field as a result 
of the ring current. 
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Xanthisma texanum DC. (Composi- 
tae) is a diploid plant in which n = 
4II with zero to four small supernu- 
merary chromosomes (B-type). As in 
Claytonia virginica (Portulacaceae), the 
number varies within the individual but 
that variation is not random (1). Recent 
discussion of the phenomenon in Clay- 
tonia, a tetraploid, centered on genetic 
control of supernumerary chromosome 
distribution within individuals (2). 
Parnell argued that Lewis had not 
fully considered polyploidy as an ex- 
planation for the multiple genome phe- 
nomenon. 

True roots lose B-chromosomes in 
embryogenesis, although rarely they 
may persist in low numbers in seedlings 
(3). Such behavior has been observed 
consistently in more than 75 plants. On 
the other hand, adventitious roots from 
cuttings may retain B-chromosomes in 
low numbers, even after 5 months of 
growth. In one plant 2n = 9 was the 
most common number found in emer- 
gent adventitious roots and in some ad- 
ventitious roots of the same plant after 
the roots had grown several decimeters. 
Clearly there is some controlled differ- 
ence with respect to genome of true 
root tissue and stem tissue which has 
differentiated into root tissue. 

Behavior of B-chromosomes in meio- 
sis is consistent with time. Thirty-six 
buds taken from one plant over the 
space of 8 months were examined. 
Among 1,073 pollen mother cells, 
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1,019 had 51I, eight had four A,i + 2 
Bi, 15 had nondisjunction of the BII at 
Al or of the B chromatids at A2, three 
had 4nI, five had 4nI + 1BI, two had 61n 
and the remaining were A-chromosome 
abnormalities. There were many micro- 
nuclei in adjacent tapetal tissue, which 
indicated loss of B-chromosomes. There 
was no correlation between time of 
flowering and percentage of abnormal 
behavior of B-chromosomes. 

In a single floret of another plant 322 
pollen mother cells had 5nI, two had 
precociously dividing B-chromosomes 
and two ontogenetically related cells 
had 41 and 61n each. 

Because behavior of B-chromosomes 
is so consistent within single thecae 
and often among whole anthers and 
florets and even buds from the same 
plant, control of B-chromosomes in a 
diploid, such as Xanthisma with mul- 
tiple genomes, is clearly indicated. 
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