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like crystals, brown turbid glass, ag- 
gregates of grains, and many of the 
typical textures of meteoritic chondrules 
(Figs. 1, 2, and 3). Lunar chondrules 
have been reported by Butler et al. (4), 
Kurat et al. (5), Fredriksson et al. (6), 
and von Engelhardt et al. (7). 

Abundant chondrules and chondrule- 
like bodies have been observed in lunar 
samples 14313, 14318, and 14301, and 
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Fig. 1 (left). Lunar chondrule from Apollo 14 sample 14318 seen with plane polarized 
light. The chondrule apparently was a fluid silicate drop that formed a spherical shape 
due to surface tension, then crystals began to nucleate at the surface and crystallization 
proceeded into the body of the sphere. This texture is typical of many meteoritic 
chondrules. The chondrule is 0.5 mm in diameter and composed chiefly of pyroxene, 
plagioclase, and brown turbid glass. Fig. 2 (right). Three lunar chondrules in 
Apollo 14 sample 14313 seen in plane polarized light. These chondrules do not appear 
to have been fluid drops, but instead appear to be rounded rock fragments of both 
breccias and igneous rocks. These fragments may have been rounded by abrasion 
in the movement of the base-surge deposits from the Imbrian impact. The length of 
the field of view is 0.8 mm. 
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Chondrules in Apollo 14 Samples: 
Implications for the Origin of Chondritic Meteorites 

Abstract. Chondrules have been observed in several breccia samples returned 
by the Apollo 14 mission. These lunar chondrules are believed to have formed 
during a large impact event, perhaps the one that formed the Imbrian Basin. 
This suggests that some meteoritic chondrules are also formed by impact processes 
such as crystallization after shock melting and abrasion and diffusion in base-surge 
and fall-back deposits generated by impacts on planetary surfaces. 
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Fig. 3. Lunar chondrule (seen in plane 
polarized light) in an Apollo 14 sample 
similar to some chondrules found in primi- 
tive types of meteorites. This type of 
chondrule does not appear to be a rounded 
rock fragment or crystallized silicate drop- 
let, but may be formed by diffusion around 
a rock fragment core rich in olivine in 
impact-generated base-surge or fall-back 
deposits that have cooled slowly. Length 
of the field of view is 0.8 mm. 

rare to moderately abundant objects 
similar to chondrules have been found 
in samples 14305, 14306, and 14311. 
These samples are thought to be genet- 
ically different from the previously 
described samples from Apollo 11 and 
12 mainly because they have been 
seriously shock metamorphosed by a 
large impact, probably the large im- 
pact that formed the Imbrian Basin (8). 
Although the use of the term "chon- 
drule" for these objects causes some 
problems in nomenclature, this usage 
seems justified because of the extreme 
textural similarity of these objects with 
meteoritic chondrules. The Apollo 14 
samples are the first naturally occurring 
materials, except for recognized meteor- 
ites, that have been observed to con- 
tain chondrules. 

At least three mechanisms may exist 
for the formation of chondrules in large 
impacts: (i) impact melting, rapid cool- 
ing, and subsequent crystallization of 
silicate spherules (9) (Fig. 1); (ii) 
rounding of rock fragments by abra- 
sion in base-surge deposits that result 
from impacts (Fig. 2); and (iii) dif- 
fusion around rock fragments and 
mineral grains in impact-generated base- 
surge and fall-back deposits that are 
at elevated temperatures (Fig. 3). 

If these lunar chondrules have been 
formed by the mechanisms accompany- 
ing a large impact, then at least some, 
and perhaps many, meteoritic chon- 
drules may have been formed by the 
same process. Thus, some fraction of 
the meteoritic chondrules, and hence 
some fraction of the chondritic meteor- 
ites, may have been formed by large 
impacts on the surface of medium to 
large sized terrestrial planetary bodies 
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The production of chondrules and 
chondritic rocks may be an inescapable 
result of the terminal stages of accre- 
tion of silicate planetary bodies. 
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X-ray Structure of Racemic 

Glycerol 1,2.(Di- 1-bromoundecanoate)-3-(-p-Toluenesulfonate) 

Abstract. The single crystal x-ray structure of racemic glycerol 1,2-(di-11- 
bromoundecanoate)-3-(p-toluenesulfonate), a sulfolipid analogous to the membrane 
phospholipids, reveals a folded conformation. 
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In our studies on the crystal and 
molecular structure of model com- 
pounds for biological membrane compo- 
nents, rac glycerol 1,2-(di-11-bromoun- 
decanoate)-3-(p-toluenesulfonate), here- 
after referred to as compound 1, was 
synthesized. Compound 1 crystallizes as 
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triclinic needles from a 50 percent (by 
volume) aqueous alcohol solution. The 
space group is P1 with cell constants 
a -=8.070(2) A, b = 5.463 (14) A, c 
- 40.91(9) A, a = 93.23(9)?, / = 
96.21 (3)?, y =85.18(11)?, cell volume 
= 1782 A3, Z = 2, dm = 1.39 g cm-3, 
de = 1.396 g cm-3. The crystal struc- 
ture was solved by the heavy atom 
method and refined by full matrix 
least squares to R = 0.11 (1) by 
use of three-dimensional x-ray diffracto- 
meter data. 

A folded conformation was found 
(see Fig. 1). The bond lengths and 
angles are within expected values (2). 

The least-squares planes (3) for the 
two fatty acid chains intersect at a dihe- 
dral angle of 79?; the hydrocarbon 
subcell chain packing is the orthorhom- 
bic perpendicular type (3). The long 
molecular axes (3) of the two hydro- 
carbon chains are nearly parallel show- 
ing a slight divergence of 4.5? from the 
glycerol region toward the terminal 
ends. The fatty acid chain attached to 
carbon-1 of glycerol is slightly helical, 
having a pitch of about 160 A. The 
polymethylene chain twists 30? between 
the carboxyl group and terminal end. 
In contrast, the fatty acid chain at- 
tached to carbon-2 of glycerol is planar 
(standard deviation = 0.04 A) and ex- 
hibits no significant deviations from its 
least-squares plane. The conformation 

Fig. 1. The molecular structure of rac 
glycerol 1,2-(di-11-bromoundecanoate)-3- 
(p-toluenesulfonate) (1). 
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