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A study of the way an organism 
budgets its available time and energy 
can provide valuable data for an eco- 
logical analysis of its behavior. Hum- 
mingbirds, because of their small size, 
are faced with relatively great prob- 
lems of heat loss and energy balance. 
Time and energy studies of humming- 
birds are therefore of particular eco- 
logical interest. Hummingbirds are al- 
so ideal subjects for the translation of 
time budgets into energy budgets since 
their active day is spent at essentially 
two distinct metabolic levels, perching 
and flight. (Most hummingbirds are 
incapable of terrestrial locomotion.) 

Pearson (I) was the first to use 
physiological data to quantify the meta- 
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bolic costs of various activities of a 
wild bird, a nonbreeding male Anna 
Hummingbird (Calypte anna). My ob- 
jective in this report is to extend this 
analysis to other times of year and 
other ecological contexts, in order to 
determine the effects of reproduction 
and territoriality on the time and 
energy budget of the male Anna 
Hummingbird. 

The bird observed by Pearson was 
holding a feeding territory; defense of 
flowers by male Anna Hummingbirds is 
common during the nonbreeding season 
(2). The size of the feeding territory 
varies with the density and nectar pro- 
duction of the flowers, and the level of 
competition (3). Most feeding terri- 
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tories are only a few square meters in 
extent; the surrounding area is not de- 
fended, and intruders are seldom pur- 
sued far beyond the bounds of the ter- 
ritory (2). During the breeding season 
male C. anna hold breeding territories 
consisting of a central "core area" of 
about 0.1 ha, and a surrounding "buffer 
zone" of up to 4 to 6 ha (2, 4). In 
breeding territories the area itself is 
defended rather than a food source, 
although the distribution of flowers is 

apparently important in the choice of 
a territory site by male C. anna. Breed- 
ing males engage in advertising flights, 
display dives, and frequent long chases 
in defense of their territories (4). In 

energetic terms, breeding territories 
thus appear to be much more expen- 
sive to defend than feeding territories. 

Field observations were made in the 
Santa Monica Mountains, Los An- 

geles County, California. Breeding 
males were studied in February and 
March 1967, January through April 
1968, and March 1969; males on feed- 

ing territories were observed in Oc- 
tober 1968 (5). The basic method was 
continuous observation of wild birds 
for periods of from several hours up 
to a full day. The time of day and the 

length and nature of all bouts of ac- 

tivity were recorded. Activities were 
classified as perching (P), feeding at 
flowers (F), insect-catching by glean- 
ing or hawking (ic), territorial aggres- 
sion (A), miscellaneous flying (f), and 
out of contact (ooc). This last cate- 

gory includes time that the bird was 
out of my sight, hearing, or both, and 
almost always involved long flights 
beyond the bounds of the territory. 
Data on ambient (TA) and black-bulb 

(TBB) temperatures (6) and weather 
conditions were taken every 15 minutes 
in the field. 

To obtain an accurate and meaning- 
ful time budget, one must study a bird 
whose activities are highly localized 
and visible, and all of whose territory 
and the surrounding area can be effi- 
ciently scanned. The abundances of 
flowers present in the territories of in- 
dividual male C. anna differ greatly, 
and hence there are differences in the 
amount of time the birds must spend 
feeding elsewhere, often at consider- 
able distances (2). I was unable to 
evaluate feeding activity for most 
males that fed to any considerable ex- 
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and hence there are differences in the 
amount of time the birds must spend 
feeding elsewhere, often at consider- 
able distances (2). I was unable to 
evaluate feeding activity for most 
males that fed to any considerable ex- 
tent outside of their territories. Of nec- 
essity, I was restricted to intensive ob- 
servation of those few individuals that 
met all these requirements. I obtained 
69 hours of observations, including 
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energy demands by varying its allocation of time and energy among different 
activities; total energy expenditures change relatively little. Augmented terri- 
torial defense during the breeding season is made possible by increased feeding 
efficiency due to the availability at this time of very nectar-rich flowers. 
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two full days, on one breeding male 
C. anna, and some 25 hours on six 
other males in the local population 
(7). Much of the latter observations 
are comparatively unreliable because 
of the large amount of time these birds 
were out of contact. I also obtained 16 
hours of observations on two males 
holding feeding territories for com- 
parison with Pearson's data (1, 8). 
Generalizations derived from data on 
so few individuals must be viewed 
with caution but are potentially use- 
ful in suggesting directions for fu- 
ture research. 

Energy budgets were obtained by 
calculating the caloric equivalents of 
perching and flight. Perching metab- 
olism was calculated by Pearson's 
method (1, 9). Flight metabolism was 
assumed to be 50 ml of O2 per gram 
per hour or 0.018 kcal/min; forward 
and hovering flight were assumed to be 
equally expensive metabolically (10). 

Under comparable weather condi- 
tions, the proportion of time spent in 
flight for birds on breeding territories 
is quite similar to that for birds on 
feeding territories (Figs. 1 and 2). 
High ambient temperatures and strong 
insolation are accompanied by a de- 
crease in flying regardless of the type 
of territory and the time of year. For 
the data of Fig. 1, significant negative 
correlation exists between total flying 
time and both TA (r = -.83, p <.001) 
and TBB (r =-.67, p <.01). 

Although the total amount of flying 
activity remains fairly stable, the al- 
location of time and energy differs 
markedly between breeding and feed- 
ing territoriality (Figs. 1 and 2). De- 
pending on the individual and the 
weather, as much as four times as 
much time and energy are expended in 
defense of a breeding territory as in 
the defense of a feeding territory. This 
increase in aggressive activity by breed- 
ing birds coincides with a marked de- 
crease in feeding activity at flowers, as 
is shown by the ratios between aggres- 
sive and feeding activities for differ- 
ent males in Fig. 1. At comparable 
temperatures, the A : F ratio for breed- 
ing birds is three to five times that for 
nonbreeding birds. There is little dif- 
ference in insect-catching activity be- 
tween breeding and feeding territories. 
Breeding birds are thus increasing en- 
ergy expenditures for territoriality, but 
are actually decreasing the time de- 
voted to energy intake. 

Breeding males spend different pro- 
portions of their time feeding and fight- 
ing, with the time spent in each ac- 
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tivity dependent in large part on the 
quality of the nectar supply on ter- 
ritory. Individuals controlling better 
food resources must spend less time 
feeding, but often defend their terri- 
tories more frequently (2). All the 
males in Fig. 1 except one controlled 
enough flowers so that they could do 
all their feeding on territory. Male 
68-Y held a poorer territory than the 
other males shown in Fig. 1 and did 
considerable feeding at a small Euca- 
lyptus tree 200 m away. (This bird was 
the only one I studied whose off-terri- 
tory feeding area could be observed 
from the vicinity of the territory.) The 
A : F ratio for Ibird 68-Y is lower than 
for other males at similar tempera- 
tures (Fig. 1). 

To remain in energy balance, breed- 
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ing birds must be accumulating more 
energy per unit feeding time than birds 
on feeding territories. The flowers most 
frequently used by breeding C. anna 
males are Ribes speciosum and Euca- 
lyptus globulus. The former is the most 
nectar-rich of native food plants, the 
latter the most nectar-rich of intro- 
duced ones (2). The high nectar pro- 
duction of these flowers probably makes 
possible the requisite increase in feed- 
ing efficiency by breeding birds. In- 
deed, it is probable that a territorial 
system as energetically demanding as 
that of the breeding male C. anna could 
not have evolved without a rich nec- 
tar source such as Ribes. I have ar- 
gued elsewhere (2) that female C. 
anna choose to mate with males on the 
best territories (that is, those with the 
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Fig. 1. Amount and allocation of flying activity of various male Anna Hummingbirds, 
on breeding and feeding territories. Observation periods were 2 to 4 hours in length, 
in late morning or early afternoon; observation periods in which time out of con- 
tact (ooc) made up more than 50 percent of all flying time are excluded. Observation 
periods are arranged approximately in order of increasing ambient (TA) and black-bulb 
(TBB) temperatures, to show the depressing effect of high temperature on flying activity. 
F, Feeding at flowers; ic, insect catching; A, territorial aggression; f, miscellaneous 
flying. 
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most Ribes), and competition between 
males for these territories is most in- 
tense. Ability in territorial defense is 
thus an important component of re- 
productive fitness in the male C. anna, 
and this characteristic may have in- 
fluenced the evolution of such a stren- 
uous territorial system. 

An organism can accommodate the 
increased seasonal demands of re- 
production and territoriality by in- 
creasing its total energy expenditures, 

%TIME 

or by changing the allocation of time 
and energy to different activities while 
maintaining total energy expenditures 
relatively constant (11). Studies of 
male passerines indicate that they use 
primarily the first strategy (11, 12), 
whereas the male Anna Hummingbird 
appears to use primarily the second. 
Greater availability of food is criti- 
cal for both strategies but especially 
for the second, where increased ter- 
ritorial activity comes at the expense 
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:FROM PEARSON (1) 
Fig. 2. Percent of total active day (dawn to dusk) spent at various acitvities by one 
male C. anna on breeding territory on two different days, and by one male C. anna 
on feeding territory [average of two consecutive days; data from Pearson (1)]. Weather 
cond-tions appear quite similar for all 4 days (sunny, with a daily temperature range 
of 12? to 25?C). P, perching; other abbreviations used are the same as those given 
in Fig. 1. 
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of feeding time. The stationary, con- 
spicuous nature of flowers and their 
continued secretion of nectar over 
periods of several hours greatly en- 
hance their value as a food resource. 
Insects, although important nutrition- 
ally, contribute relatively little to the 
total energy budget of male Anna 
Hummingbirds. Similarly, insectivorous 
passerines may not be able to increase 
their feeding efficiency as greatly as 
hummingbirds can because insects are 
a less predictable food source than nec- 
tar (13). 

The fact that all of a hummingbird's 
major activities involve flight, and 
are therefore relatively expensive en- 
ergetically, may partly explain why 
no overall increase in flying with breed- 
ing occurs in male C. anna. A ratio 
of flight to perching time of 1: 5 or 
1: 6 may be the most efficient long- 
term operating condition for a hum- 
mingbird not in the special physiologi- 
cal state associated with migration. A 
"two-gear" metabolic strategy-bouts 
of intense activity alternating with 
quiescent periods-is also an efficient 
one for a small mammalian homoio- 
therm (14). 
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with repetitious DNA as well as the 
recognition of certain homologs (2). 
We now report a simple modification 
of the Giemsa stain which produces a 
banding pattern very similar to that 
observed with QM fluorescence stain- 
ing; it also stains certain heterochro- 
matic areas differentially. 

A banding pattern similar to that 
seen with QM fluorescence staining or 
differential staining of the centromere 
regions of certain human chromosomes 
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was occasionally observed in our lab- 
oratory with routine orcein or Giemsa 
staining. A systematic study of certain 
of the variables involved in the Giemsa 
staining procedure was therefore un- 
dertaken in order to develop a more 
regularly informative staining tech- 
nique. Cells were cultured for 68 to 70 
hours in a complete McCoy's 5A me- 
dium with 15 percent fetal calf serum, 
harvested by treatment with hypotonic 
KCL (0.075 mole/liter), fixed in a 
mixture of methanol and acetic acid 
(3 : 1), spread, and air-dried by blow- 
ing. Several aspects of the Giemsa 
staining procedure were studied in de- 
tail. The pH of the Na2HPO4 buffer 
and stain was varied from pH 5.0 to 
12.0 by the addition of citric acid or 
sodium hydroxide to the buffer. Two 
milliliters of stain and 2 ml of buffer 
solution were then added to 96 ml of 
water. The pH was determined with a 
Beckman Zeromatic pH meter. No 
consistent banding pattern was noted 
below pH 9.0; apparent chromosomal 
damage was induced above pH 10.0, 
and less clear and less consistent band- 
ing patterns were observed. The dura- 
tion of staining in Giemsa at pH 9.0 
also proved to be important. When the 
slides were stained for 1 to 2 minutes, 
the predominant staining was in the 
centromere regions; occasional staining 
of the secondary constriction regions 
of Al and E16 was also observed (3). 
When the slides were stained for 4 to 
10 minutes, a reproducible banding 
pattern similar to that seen with QM 
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Fig. 1. Human karyotype showing comparable banding patterns for each homolog. Homologs stained with Giemsa 9 technique are 
placed in the center of each set of four chromosomes. The same chromosomes subsequently stained by the QM fluorescence technique 
are placed adjacent to these. The comparable banding patterns for homologs and for both techniques are evident. 
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Identification of Each Human Chromosome with a 

Modified Giemsa Stain 

Abstract. Differential staining of human chromosomes can be obtained when 
the pH of Giemsa stain is changed to 9.0 from the usual 6.8. Such staining 
permits identification of all homolog pairs and distinct regions within chromosome 
arms. In most instances, the pattern is quite similar to that obtained with 
quinacrine mustard fluorescence staining. Certain regions, such as the paracentric 
constrictions in chromosomes Al and C9, and the distal end of the long arm 
of the Y chromosome stain differently with the Giemsa 9 technique. The tech- 
nique is considerably simpler than the quinacrine mustard fluorescence technique 
and identification of homologs is also easier than in cells stained by the latter. 
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