
be supposed that these concentrations 
of DFP or Tabun are in excess, by 
orders of magnitude, of what would 
have caused complete inhibition of 
axonal acetylcholinesterase. However, 
the difficulties in attempting to measure 
unambiguously the degree of inhibition 
of acetylcholinesterase in intact tissue 
are considerable and have frequently 
been reviewed (1, 4, 16). 

Neither a role for DFP-hydrolyzing 
enzyme in nerve function, if indeed any 
exists, nor a natural substrate for this 
enzyme can be inferred from these re- 
sults. In a more immediately practical 
context, it seems reassuring that toxic 

organophosphorus compounds such as 
DFP and related nerve gases and in- 
secticides may be detoxified by enzymes 
in the squid and possibly in other in- 
habitants of the ocean. Such reassur- 
ance must be tempered by the marked 
substrate specificity described here and 
indicated previously for other classes of 
organophosphates (2). 
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Salicylate: Effect on Membrane Permeability 
of Molluscan Neurons 

Abstract. Identified cells in the buccal ganglion of the marine mollusk Navanax 
inermis were exposed to salicylate (1 to 30 millimoles per liter) for short periods. 
Salicylate increased the permeability to potassium and decreased the permeability 
to chloride in a reversible, dose-dependent manner, producing a concomitant in- 
crease in membrane potential and a decrease in membrane resistance. These events 
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Although salicylates are used daily 
as analgesics and antipyretics, little re- 
search has been reported on their effect 
on single neurons (1). We report here 
the results of experiments on the effect 
of salicylates at the membrane of mol- 
luscan neurons. 
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ber and perfused with normal physio- 
logical saline (3) at room temperature 
(22? to 24?C). After opening the cap- 
sule enveloping the ganglion, we im- 
paled identified cells '(4) with double- 
barreled micropipettes filled with 3M 
KC1 (2 to 10 megohm resistance). One 
barrel was used to record membrane 
potential while the other allowed pas- 
sage of current across the membrane. 
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Fig. 1. Salicylate increases transmembrane potential and decreases membrane re- 
sistance. The results illustrated were obtained from cell M-R and are representative of 
all cells studied. The input resistance of the cell was obtained in normal physiological 
saline at a resting membrane potenital of -62 mv by passage of 4-na hyperpolarizing 
pulses 800 msec long (Rm) through a second intracellular electrode. Perfusion of the 
l-ml chamber with 50 ml of physiological saline containing 3 mM sodium salicylate 
(downward arrow) caused a 2-mv hyperpolarization of the membrane potential with 
little change in resistance. Upon washing (upward arrow) with saline free of salicylate 
both the membrane potential and resistance returned to their control values. Subsequent 
tests with 10 mM and 30 mM salicylate produced greater hyperpolarizations (6 and 
12 mv, respectively) and decreases in resistance (from 1.6 to 1.4 and 0.7 megohm, 
respectively). The upward deflections from the baseline are due to superimposed 
synaptic activity. The amplitude of these postsynaptic potentials is reduced in salicylate 
and readily recovers upon washing. (The record showing the recovery from 30 mM 
salicylate is interrupted briefly by a burst of synaptic activity which saturated the pen- 
recorder.) The membrane does not show rectifying properties over this range of 
potentials, and so in the absence of salicylate the resistance at -74 mv is the same as 
that at -63 mv (inset, lower right). 
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meability observed in these cells. These 
latter findings complement research on 
erythrocyte membranes which has 
shown that salicylate increases cation 
permeability and decreases anion per- 
meability (7). The membrane hyper- 
polarization and decrease in total mem- 
brane resistance of a particular neuron 
in the presence of salicylate would 
serve to decrease both the output from 
and the input to such a cell (8). 
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We report here that 20-hydroxyecdy- 
sone when ingested by the stable fly 
prevents vitellogenesis in developing 
oocytes. These results indicate that the 
labeled messenger RNA passes from 
the nucleus to the nurse cell cytoplasm 
but that the lipid material necessary for 
vitellogenesis is not synthesized in those 
flies treated with 20-hydroxyecdysone. 
This steroid (1) and related 6-keto- 

Fig. 1. (A) Day 1, 1 hour after injection 
with [3H]uridine; the labeling in the con- 
trol (no steroid) is in the cytoplasm and 
nucleus of the nurse cells (X 40). (B) 
Day 3, 6 hours after injection with 
[aH]uridine; the labeling is in the cyto- 
plasm of the nurse cells of the fly treated 
with 20-hydroxyecdysone (X 25). (C) 
Day 4, 1 hour after injection of [H]uri- 
dine; the labeling of the treated fly is in 
the nucleus of the nurse cells (X 40). 
(D) Untreated control on day 4 dissected 
1 hour after injection of other flies with 
[3H]uridine (X 25). 
18 JUNE 1971 

We report here that 20-hydroxyecdy- 
sone when ingested by the stable fly 
prevents vitellogenesis in developing 
oocytes. These results indicate that the 
labeled messenger RNA passes from 
the nucleus to the nurse cell cytoplasm 
but that the lipid material necessary for 
vitellogenesis is not synthesized in those 
flies treated with 20-hydroxyecdysone. 
This steroid (1) and related 6-keto- 

Fig. 1. (A) Day 1, 1 hour after injection 
with [3H]uridine; the labeling in the con- 
trol (no steroid) is in the cytoplasm and 
nucleus of the nurse cells (X 40). (B) 
Day 3, 6 hours after injection with 
[aH]uridine; the labeling is in the cyto- 
plasm of the nurse cells of the fly treated 
with 20-hydroxyecdysone (X 25). (C) 
Day 4, 1 hour after injection of [H]uri- 
dine; the labeling of the treated fly is in 
the nucleus of the nurse cells (X 40). 
(D) Untreated control on day 4 dissected 
1 hour after injection of other flies with 
[3H]uridine (X 25). 
18 JUNE 1971 

changed isosmotically by substituting NaCI 
for KCl. In saline with a low concentration 
of Na+, 482 mM NaCI was replaced by 241 
mM MgCl,, and 234 mM mannitol, giving a 
solution isotonic with normal physiological 
saline but containing 10 mM Na+ with a 
constant concentration of Cl-. In saline with 
a low concentration of Cl- NaCI was re- 
placed by Na2SO, so that the final con- 
centration of Na+ remained constant while 
that of Cl- decreased to 70 mmole/liter. 
Mannitol (400 mmole/liter) was added to 
bring the osmolarity to 1100 milliosmoles per 
liter. 

6. W. A. Hurlbut, Amer. J. Physiol. 209, 1295 
(1965); B. Anner, J. D. Ferrero, M. Schoir- 
deret, Agents Actions 5, 249 (1970). 

7. J. O. Wieth, J. Physiol. (London) 207, 563 
(1969); ibid, p. 581. 

8. On occasion we impaled cells whose rest- 
ing membrane potential, input resistance, 
and sensitivity to changes in [K+]O were 
significantly less than normal, which sug- 
gested injury. After a brief exposure to rela- 
tively small concentrations of salicylate (? 3 
mmole/liter), the membrane properties of the 
cells were markedly changed: the membrane 
potential was greater than that before applica- 
tion of salicylate, whereas the resistance had 
increased relative to initial values, and the 
slope of the curve of membrane potential as 
a function of log [K+]o was greater than that 
observed initially. These new values were 
maintained thereafter. It would appear that 
salicylate had a salutory effect on these 
neurons. 
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steroids inhibit ovarian development 
when ingested by the stable fly [Sto- 
moxys calcitrans (L.)] (2), the house fly 
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when ingested by the stable fly [Sto- 
moxys calcitrans (L.)] (2), the house fly 

(Musca domestica L.), the confused 
flour beetle (Tribolium confusumn Jac- 
quelin duVal) (3), and the boll weevil 
(Anthonomus grandis Boheman) (4). 
Several physiological and biochemical 
processes in insects have been suggested 
as being influenced by the insect molt- 
ing hormone, a-ecdysone (5), and Neu- 
feld et al. (6) showed that protein syn- 
thesis increased in the body wall and 
fat body of Calliphora larvae 4 hours 
after injection of 20-hydroxyecdysone; 
however, the role of 20-hydroxyecdy- 
sone in the inhibition of ovarian matu- 
ration in insects is still undetermined. 

Young female stable flies were per- 
manently sterile after having ingested 
a 0.1 percent solution of 20-hydroxy- 
ecdysone in fresh citrated beef blood 
for three consecutive days (2). To elu- 
cidate the biological activity of 20- 
hydroxyecdysone, we fed groups of 
similar flies from the laboratory colony 
a similar solution for four consecutive 
days (first day of feeding 12 hours after 
eclosion). For 4 days, beginning 24 
hours after feeding started, ten flies 
were removed and each was injected 
with 1 ,tl of an aqueous solution of 
tritiated uridine (1.0 mc/ml, 5.0 c/ 
mmole) (7). The ovaries were dissected 
1, 6, and 24 hours after injection; fixed 
in Carnoy, Bouin, or formalin fixative; 
and sectioned at 7 ,u. After fixation 
and clearance of the tissue on slides, 
the slides were dipped in nuclear track 
emulsion NTB-2 and held in lightproof 
boxes for 1 or 2 weeks before develop- 
ment in Dektol (7). The tissue was then 
stained with methylene blue. The same 
procedures were used with flies of the 
same ages divided into three control 
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Ovarian Maturation in Stable Flies: 

Inhibition by 20-Hydroxyecdysone 

Abstract. The steroid 20-hydroxyecdysone when given by mouth inhibits ovarian 
maturation in the stable fly, Stomoxys calcitrans (L.), by preventing lipid synthesis 
necessary for vitellogenesis in the developing oocyte. 
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