
turn is clearly disproven. Similarly the 
theory that CNV and the P300 effect 
reflect the action of a common "activa- 
tion" mechanism must be rejected. It 
is likely that all EEG activity is corre- 
lated with the gross arousal level of the 
subject and that this common element 
may introduce covariances between dif- 
ferent phenomena derived from the 
EEG. But another process is required 
to explain the dissociability of CNV 
from the P300 effect. Apparently there 
are lat least two independently variable 
modulators of cortical electrical activity 
correlated with moment-to-moment ef- 
ficiency in human performance. Al- 
though these data are not addressed 
directly to Nataanen's (6) or Karlin's 
(4) speculations about the psychologi- 
cal processes underlying CNV and the 
P300 effect, such speculation must now 
account for the independent variability 
of these two phenomena. 
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Fig. 1. Potassium-uranium systematics for lunar, chondritic, and terrestrial samples. 
Lunar data from figure 1 of Fanale and Nash (1) (see their references for original 
data); chondritic data from Fisher (5); dunite and peridotite data from Fisher (2); 
lherzolite data from Green et al. (3). 
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which thus far have been analyzed must 
be "enriched" in both U and K, and 
we must search for "depleted" lunar 
material which would enable the trend 
lines to be extrapolated to the left in 
Fig. 1 so that they cross that of the 
earth at some material balance point. 

Figure 1 of Fanale and Nash (on 
which Fig. 1 is based) shows all the 
terrestrial data lying along the K/U 
= 104 line. This is an oversimplification 
based on incomplete data. In Fig. 1 I 
show some recent K/U data for ultra- 
mafic rocks (2, 3). These types of rock 
are not unimportant in a consideration 
of the total chemical makeup of the 
earth; it is generally considered that 
either the peridotite inclusions in basalt 
or kimberlite or the lherzolite nodules 
shown here are the best approximations 
to mantle rocks that we have at the 
present time. Also shown in Fig. 1 are 
some dunite data. Dunites are most 
probably the residue from the differen- 
tiation of mantle material into basalts. 
For comparison, the dunite point quoted 
by Fanale and Nash from the data of 
Tilton and Reed (4) is shown; this point 
was based on only one K datum and 
on U data for only two rocks (for which 
Tilton and Reed specified that, because 
of contamination and analytic difficul- 
ties, the data should be used only as 
limits to the actual U concentrations). 

The data of Fig. 1 show clearly that 
the lunar K and U abundances already 
observed in the Apollo 11 and Apollo 
12 samples are well within the range 
found in terrestrial peridotite inclusions 
in basalt and kimberlite. The lunar K/U 
ratio of about 3 X 103 is the same as 
that in both the peridotite inclusions 
and the lherzolite nodules. Therefore 
the data available at present are in 
agreement with the notion that the 
earth and moon both accreted in the 
same portion of the pre-solar-system 
cloud. These data do not compel one 
to believe that there must exist a "huge 
reservoir of ultramafic 'depleted' phases" 
with K/U >104 (1, p. 283) among 
the as yet unexplored lunar regions. 
The conclusion of Fanale and Nash 
that chondrites accreted in a different 
portion of space remains valid. 
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The new data on the ratio of K to U 
in ultramafic rocks presented by Fisher 
constitutes a valuable addition to our 

knowledge of the K-U systematics of 
the earth. His conclusion that "the data 
available at present are in agreement 
with the notion that the earth and moon 
both accreted in the same portion of 
the pre-solar-system cloud" is identical 
with our original conclusion, namely, 
"Thus differences between the K/U 
ratios of Apollo samples and crustal 
rocks of the earth do not preclude the 

possibility that the moon and the earth 
were derived from materials possessing 
the same K/U ratio." (1, p. 283). 

On the other hand, we disagree with 
Fisher's conclusion that "These data 
do not compel one to believe that there 
must exist a 'huge reservoir of ultra- 
mafic "depleted" phases' . . . among 
the as yet unexplored lunar regions." 
As we emphasized in our report, the 
fact that Apollo samples are highly 
differentiated is obvious from their U 
contents, which are from 20 to 600 
times those of chondrites. Chondrites 
are normally assumed to exhibit rough- 
ly the relative abundances of non- 
volatile elements of the initial solar 

system. No mechanism except mag- 
matic differentiation has ever been 
suggested which could produce such 
an enormous enrichment in uranium 
(including preaccretion heating). Ma- 
terial balance dictates that a much 
larger corresponding reservoir of ma- 
terial depleted in K and U must exist, 
probably at depth on the moon. Wheth- 
er some magmatic differentiation of 
lunar material occurred prior to hypo- 
thetical fission from the primitive 
earth remains essentially an open 
question. But in this connection we 
should also consider the argument 
that, if the moon throughout its volume 
has always possessed a uranium con- 

tent equal to the average of the Apollo 
samples, the moon would almost cer- 
tainly be molten throughout at the 
present time, which does not appear to 
be the case. 

The recent discovery of a glass rich 
in potassium, rare earth elements, and 
phosphorus ("KREEP"), simultaneously 
reported by several groups of workers 
at the Apollo 12 conference in Hou- 
ston in January 1971 (2), together with 
further studies of rock 12013 (3), sug- 
gests to us an additional interpretation 
of one aspect of the data. It now ap- 
pears that the Apollo 11 and 12 samples 
may represent U- and K-enriched mem- 
bers of essentially the same differentia- 
tion sequence, and that magmatic proc- 
esses that produced siliceous material 
such as rock 12013 may also have en- 
riched such material in U relative to 
K. 

This process may be analogous to 
the apparent enrichment in U over K in 
granitic, relative to basaltic, rocks on 
earth [figure 1 in (1)]. Such an inter- 
pretation would also be consistent with 
our conclusion that "the two suites ap- 
pear to have been derived from ma- 
terials of identical potassium and urani- 
um content" (1, p. 282). In any case, 
this would not affect our conclusions 
concerning the relationship between 
the bulk K/U ratios of terrestrial, 
lunar, and chondritic material. 

Subsequent to the publication of our 
report, it was brought to our attention 
that Tera et al. (4) have discussed the 
K-U systematics of the Apollo 11 sam- 
ples and have pointed out that both U 
and K are probably highly concentrated 
in interstitial glassy material. 
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