
lacking essentially half of the exine is 

probably a unique feature of this 

family. 
Apertures are openings or thin areas 

in the exine through which the pollen 
tube usually emerges at the time of 
germination. The evolution of aper- 
tures in pollen grains was one of the 
major advances of the seed plants and 
aperture type is one of the most im- 

portant phylogenetic characters of pol- 
len grains. Pteridophytes, in the strict 
sense, do not have apertures; however, 
they do have nonhomologous, thin 
areas called tetrad scars by which the 
spores often open. It was in gymno- 
spermous plants that the first apertures 
evolved. Certain fossil gymnosperm 
pollen grains (for example, the pteri- 
dosperms) still have a tetrad scar on 
the proximal face (inward face of the 
meiotic tetrad) which is homologous 
to the tetrad scar of pteridophyte 
spores. The first true apertures, how- 
ever, evolved at the distal pole (facing 
outward in the meiotic tetrad). One 
of the earliest concepts developed in 
comparative pollen morphology was 
that uniaperturate pollen always has 
the aperture at the distal pole (7). 
The validity of this hypothesis for pol- 
len of the Annonaceae was first ques- 
tioned by Bailey and Nast (8), and 
since then, the true nature of the an- 
nonaceous aperture has been open to 
some question (3, 9). From a study of 
more than 25 annonaceous genera in 
which Itetrads or polyads occur, it is 
clear that in all except one of these 
the aperture is on the proximal face 
(Fig. 2A), not the distal pole as in all 
other known uniaperturate pollen. The 
genus Pseudoxandra R. E. Fries is of 
great palynological interest because 
one of its species (P. coriacea R. E. 
Fries) has a distal aperture, a second 
[P. williamsii (R. E. Fries) R. E. 
Fries] has a proximal one, and other 
species [P. guianensis (R. E. Fries) R. 
E. Fries, P. leiophylla (Diels) R. E. 
Fries, P. polyphleba (Diels) R. E. 
Fries] show transitional stages in the 
evolution of the distinctly annonaceous 
type of proximal aperture. 

Most mature pollen grains are soli- 
tary (monads) within the thecal cham- 
bers of the stamen, but in a number 
of angiosperm families they are in 
dyads, tetrads, polyads, or pollinia, 
which consist of the entire pollen mass 
of a thecal chamber. Although there 

lacking essentially half of the exine is 

probably a unique feature of this 

family. 
Apertures are openings or thin areas 

in the exine through which the pollen 
tube usually emerges at the time of 
germination. The evolution of aper- 
tures in pollen grains was one of the 
major advances of the seed plants and 
aperture type is one of the most im- 

portant phylogenetic characters of pol- 
len grains. Pteridophytes, in the strict 
sense, do not have apertures; however, 
they do have nonhomologous, thin 
areas called tetrad scars by which the 
spores often open. It was in gymno- 
spermous plants that the first apertures 
evolved. Certain fossil gymnosperm 
pollen grains (for example, the pteri- 
dosperms) still have a tetrad scar on 
the proximal face (inward face of the 
meiotic tetrad) which is homologous 
to the tetrad scar of pteridophyte 
spores. The first true apertures, how- 
ever, evolved at the distal pole (facing 
outward in the meiotic tetrad). One 
of the earliest concepts developed in 
comparative pollen morphology was 
that uniaperturate pollen always has 
the aperture at the distal pole (7). 
The validity of this hypothesis for pol- 
len of the Annonaceae was first ques- 
tioned by Bailey and Nast (8), and 
since then, the true nature of the an- 
nonaceous aperture has been open to 
some question (3, 9). From a study of 
more than 25 annonaceous genera in 
which Itetrads or polyads occur, it is 
clear that in all except one of these 
the aperture is on the proximal face 
(Fig. 2A), not the distal pole as in all 
other known uniaperturate pollen. The 
genus Pseudoxandra R. E. Fries is of 
great palynological interest because 
one of its species (P. coriacea R. E. 
Fries) has a distal aperture, a second 
[P. williamsii (R. E. Fries) R. E. 
Fries] has a proximal one, and other 
species [P. guianensis (R. E. Fries) R. 
E. Fries, P. leiophylla (Diels) R. E. 
Fries, P. polyphleba (Diels) R. E. 
Fries] show transitional stages in the 
evolution of the distinctly annonaceous 
type of proximal aperture. 

Most mature pollen grains are soli- 
tary (monads) within the thecal cham- 
bers of the stamen, but in a number 
of angiosperm families they are in 
dyads, tetrads, polyads, or pollinia, 
which consist of the entire pollen mass 
of a thecal chamber. Although there 
are approximately 50 families of angi- 
osperms (41 dicot and 12 monocot 
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dyads (1), polyads are rare. There are 
only three families in which polyads 
are well known-Leguminosae-Mimo- 
soideae (10), Asclepiadaceae, and 
Orchidaceae. The latter two families 
are also the only angiosperm families 
with pollinia. The genus Hippocratea 
L. (Hippocrateaceae) also has 
polyads (11), as have genera in the 
Gentianaceae (12). To this rather re- 
stricted list may be added the seven 
annonaceous genera of the Cymbope- 
talum tribe as well as certain species 
of the more distantly related genus 
Xylopia L. [X. brasiliensis Spreng., X. 
ferruginea (Hk.f. & Th.) Hk.f. & Th., 
X. micans R. E. Fries, X. africana 
(Benth.) Oliv.]. Until now, the occur- 
rence of polyads in the Annonaceae 
was not recognized generally (13). 
The polyads in this family are easily 
disrupted by acetolysis, and clearing 
of stamens with careful dissection is 
often necessary to preserve them. 
From such studies the following types 
of polyads have been found: octads in 
Cymbopetalum (Fig. 2B), Cardiopeta- 
lum Schlecht., Froesiodendron R. E. 
Fries, Trigynaea Schlecht., and Dise- 
palum Hk.f.; polyads of 16 grains in 
Hornschuchia Nees; and variable poly- 
ads of 16, 18, 20; 24, or more grains 
in Porcelia Ruiz & Pav. (Fig. 2C) 
(14). It is interesting to note that 
Xylopia and all the genera of the 
Cymbopetalum tribe except Disepalum 
have transversely locellate anthers at 
maturity, with each polyad in a sepa- 
rate compartment within the stamen 
(Fig. 2C). 
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Various criteria have been proposed 
to describe the distortions of coordina- 
tion polyhedra from their holosym- 
metric geometries. In coordination 
chemistry octahedral complexes are 
often found to be distorted from 0, 
symmetry. There are two limiting types 
of distortion. Extension or compres- 
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sion along an S0 axis of the octahedron 
is called trigonal distortion. The result 
is a trigonal antiprism with Dd, sym- 
metry whose angles deviate from 90? 
but whose metal-anion distances remain 
equal in length. Extension or compres- 
sion along a C4 axis is called tetragonal 
distortion. The result is a tetragonal bi- 
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Quadratic Elongation: A Quantitative Measure of 

Distortion in Coordination Polyhedra 

Abstract. Quadratic elongation and the variance of bond angles are linearly 
correlated for distorted octahedral and tetrahedral coordination complexes, both 
of which show variations in bond length and bond angle. The quadratic elonga- 
tion is dimensionless, giving a quantitative measure of polyhedral distortion which 
is independent of the effective size of the polyhedron. 
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pyramid with D47, symmetry whose 
metal-anion distances change but whose 

angles remain equal to 90?. In many 
cases, particularly in minerals, distor- 
tions from O, symmetry are more com- 

plex, involving changes in both octa- 
hedral bond lengths and angles. For ex- 
ample, distortions of the M(1)0 and 
M(2)06 octahedra in the olivines, 
(Mg,Fe)2SiO4, have been described in 

terms of differences in bond lengths 
(1), local symmetry (2), and bond angle 
strains (3). But none of these descrip- 
tions is satisfactorily quantitative. 

Recently we have found that the vari- 
ance of the octahedral angles 
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is a convenient and realistic measure 
of distortion for those octahedra that 
show variations in both bond length 
and bond angle. This is illustrated in 
Fig. 1A where ao2 is seen to vary 
linearly with the mean octahedral quad- 
ratic elongation. The quadratic elonga- 
tion is a convenient measure of distor- 
tion often used in the analysis of finite 
homogeneous strain (4). It is defined as 

-( l{ )= (. +_I '-)1 I^ 
l/\ 

_ 
lo + Al 2 2l 

220 where 10 is the length of a line in the 
unstrained state, and 1i is the length of 
the line in the strained state. On the 
basis of this definition we have calcu- 
lated mean octahedral quadratic elon- 
gation parameters (Fig. 1A) 

6 

(Xoet)= L (l1/lo)7/6 

IES ~ -1 
ES LES 
Rs where 10 is the center-to-vertex distance 
kTES 
s for an octahedron with 0, symmetry 

whose volume is equal to that of the 
strained or distorted octahedron with 
bond lengths l,. 

- ' Similar variances and elongation pa- 
rameters can be calculated for any de- 
fined coordination polyhedron. For 
tetrahedral complexes and coordination 
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Fig. 1. (A) Mean quadratic elongation for octahedra in a variety of mineral groups 
plotted against octahedral angle variance. (B) Mean quadratic elongation for tetra- 
hedra in a variety of silicates and aluminosilicates plotted against tetrahedral angle 
variance. (C) Plot similar to Fig. 1B for tetrahedra containing cations other than Si or 
Al. The fractional part of the quadratic elongation parameter is approximately equal to 
twice the percentage deviation of the polyhedron from its holosymmetric configuration. 
For example, X = 1 + 2A1/1o. If X = 1.06, then l//lo = 0.03. 
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e(tet)2 = (0 - 109.470?2/5 
i~ 1 

and 

4 

(Xtet)= L (h/Ito)2/4 

Figure 1, A and B, shows that for a 
large number of rock-forming minerals 
strong linear correlations exist between 
(Aoct and ao(oct)2 (correlation coefficient 
R1 = 0.99) and between (Xtet) and 

0(tet)2 (R1= 0.91). Since X is dimen- 
sionless, it is not surprising that both 
large and small cation-containing octa- 
hedra (Fig. 1A) and tetrahedra (Fig. 1, 
B and C) fall on the same line when 
plotted against co(oct)2 and o0e(tt)2, re- 

spectively. The tetrahedra plotted in 
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Fig. 1B contain only Si or Al, or both, 
whereas those in Fig. 1C contain Be, 
B, Mg, P, S, Cr, Mn, Fe, Zn, Ge, As, 
Mo, and W. These figures suggest that 
angular variance and quadratic elonga- 
tion give similar quantitative measures 
of polyhedral distortion for many com- 
pounds. However, in certain cases 
where pronounced Jahn-Teller distor- 
tions are apparent and where the metal 
cation is coordinated both by anions 
and by molecules such as HO0, the 
angular variance may not be a valid 
measure of polyhedral distortion. For 
example, in dioptase, CuSiO3 'H,O, Cu 

is coordinated by four oxygen atoms in 
a square planar array at 1.95 to 1.98 A 
and by two HO2 molecules at 2.50 and 
2.65 A, forming a tetragonally distorted 
octahedron (5). The angular variance 
of this octahedron is 85.7 from which 
a quadratic elongation of 1.025 is pre- 
dicted according to Fig. 1A, whereas 
the calculated value is 1.061. This 
means that angular variance, although 
easily computed, cannot always be re- 
lied on to give as true a measure of 

polyhedral distortion as quadratic elon- 

gation. Neither bond length range nor 
bond length variance shows meaningful 

correlation with angular variance or 
quadratic elongation. 

Using the range of bond angle strains 
as a measure of octahedral distortion 
in olivines, Brown (3) demonstrated that 
octahedra containing smaller divalent 
cations (Ni2+, Mg2+, Fe2+) are less 
distorted than those containing Ca2+. 
This is substantiated in Fig. 2, A and B, 
which shows that distortions of the M(l) 
and M(2) octahedra are linearly depend- 
ent on the effective size of the octa- 
hedral cation. Using the range of bond 
angle strains or the range of bond 

lengths, one would conclude that the 
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Fig. 3. Mean octahedral quadratic elonga- 
tion as a function of axial ratios for octa- 
hedra with a ~ b -= c; dashed curves are 
for tetragonally distorted octahedra. 

larger M(2) octahedra are more dis- 
torted than the smaller M(1) octahedra. 
However, both the quadratic elongation 
and the angular variance parameters in- 
dicate that M(1) is slightly more dis- 
torted than M(2) for disordered olivines 
and for those containing only one type 
of octahedral cation. 

Figure 2C shows that distortion of 
the SiO4 tetrahedron in olivine is re- 
lated to the effective size of the cations 
in the octahedra with which it shares 
edges. Likewise, distortion of the SiO4 
tetrahedron in garnet (Fig. 2D) is de- 
pendent on the effective size of the {X} 
cation in the edge-shared dodecahedra 
(6). In both structure types the tetra- 
hedra become more regular as the 
cations in the edge-shared polyhedra be- 
come larger. For those distorted poly- 
hedra whose bond angles are ideal, for 
example, an octahedron with D2, or 
D47 symmetry, the angular variance 
cannot be used as a measure of distor- 
tion. In this case, the quadratic elonga- 
tion can be calculated with ease, since 
lo = (a b . c)1/3, where a, b, and c are 
the three center-to-vertex distances in 
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the octahedron. Graphical solutions can 
be obtained with the use of Fig. 3 in 
the following manner. For octahedra 
with D2^ symmetry, one would (i) 
order the metal-anion distances c>a>b, 
('i) find the value of the ratio c/a along 
the abscissa, and (iii) plot the ratio 
c/b among the family of solid curves. 
For tetragonally distorted octahedra, 
one would (i) compute the ratio c/a 
and (ii) use either the upper dashed 
curve if c is the unique axis 
(c > a = b) or the lower dashed curve 
if a is unique (c = b > a). 

If the mean quadratic elongation is 
used as a quantitative measure of 
polyhedral distortion, it now should 
be possible to separate by regression 
analysis the roles played by distortion 
and by size in determining the distri- 
bution of cations among coexisting 
phases as well as the polyhedral site 
preferences within a single phase. 
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and if both intracellular and extra- 
cellular potassium concentrations are 
known, then the value of the resting 
potential may be predicted by the 
Nernst equation 

RT [K]o 
Ek = - ln [K] F [K]1 

where Ek is the potassium equilibrium 
potential, R is the gas constant, T is the 
absolute temperature, F is the Faraday 
constant, [K]o is the extracellular potas- 
sium concentration, and [K]i is the 
intracellular potassium concentration. 
On the other Ihand, if the sodium gra- 
dient also contributes to the resting 
potential (3), the resting potential ob- 
served will be lower than that predicted 
by E1l, particularly at external potassium 
concentrations in the physiological 
range (4). 

Earlier studies (5) have shown that 

guinea pig papillary muscles incubated 
under anoxic conditions for up to 12 
hours have a normal resting potential 
as judged from the amplitude of the 
action potential. On the other hand, 
anoxic muscles have been shown to lose 
much of their potassium (6). Analysis 
of 42K efflux data indicated the possi- 
bility of cell compartmentalization of 

potassium (6), since a rapidly exchang- 
ing compartment contained five times 
more the amount of potassium than 
that attributable to the extracellular 
(inulin) space. It was tentatively pro- 
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Maintenance of Resting Potential in Anoxic Guinea 

Pig Ventricular Muscle: Electrogenic Sodium Pumping 

Abstract. Anoxic ventricular muscle maintained a normal resting potential de- 
spite a large loss of potassium. The resting potential was separated into two com- 
ponents: one that depended on the potassium distribution, and one that depended 
on the activity of an electrogenic sodium pump. 
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The ionic hypothesis states that the 
resting potential of excitable cells re- 
sults from the distribution of ions across 
a selectively permeable cell membrane 
(1). The potassium concentration gra- 
dient has been considered responsible 
for the resting potential of muscle cells. 
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Slight measured deviations of the mem- 
brane from the behavior of a simple 
potassium electrode have been ac- 
counted for by permeability of the 
membrane to other ions such as sodium 
and chloride (2). If the resting potential 
is dependent on potassium distribution, 
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Fig. 1. Action potential of a guinea pig 
papillary muscle after 8 hours of anoxic 
incubation in 5 mM glucose medium. Volt- 
age calibration is 100 mv and time cali- 
bration is 100 msec. Horizontal line across 
voltage indicates zero potential. 
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