
of Festuca growing in clay soils were 
found with higher frequencies of extra 
chromosomes than were those in light, 
sandy soils (9). Further examples as- 
sociating habitat and presence of super- 
numeraries are known, but none as 
unusual as that reported for Allium 
(10). When diploid plants with two to 
ten supernumeraries from the moun- 
tains of Darjeeling were moved to the 
hot climate of Calcutta they soon 
evolved into tetraploids with or with- 
out (rare) extra chromosomes. In still 
another kind of relationship, Jackson 
and Newmark (11) found an increase 
in pigment production in fruits of 
Haplopappus in plants with from one 
to four excess chromosomes. 

However, no ready explanation is 
apparent in C. virginica either for the 
presence of supernumerary chromo- 
somes or of their variation in different 
organs and tissues of an individual 
plant. Noteworthy perhaps is that the 
population studied is weedy and occurs 
near the extreme southwestern edge of 
distribution for the species. in other 
localities, particularly in the eastern 
United States where the more primitive 
cytotypes occur (12), the species is not 
weedy. 

Yet the ability to sustain infra- 
individual variability even of the germ 
line suggests a selective advantage. This 
is sufficiently locked genetically, for 
multiple genotypes are just as common 
among plants grown in the greenhouse 
as they are for those collected in the 
field. Their presence cannot be at- 
tributed to signs of breakdown of con- 
trol in cells at the end of their repro- 
ductive phase when selection is not so 
stern (1), because more cells in the 
male germ line possess excess chro- 
mosomes than do cells examined from 
elsewhere. Factors initiating the phe- 
nomenon of multiple genotypes remain 
highly speculative even as to their in- 
trinsic or extrinsic origin. 
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During a palynological survey of 
the primitive angiosperm family An- 
nonaceae (1), a natural group of gen- 
era was found with a remarkable type 
of pollen grain that appears to be 
unique among angiospermous pollen 
with regard to grain size, nature of the 
pollen exine, and type of aperture. In 
addition, the pollen units (2) of these 

genera (polyads) and their infrastami- 
nal arrangement (in septate stamens) 
are highly distinctive. The unusual pol- 
len characters of this group, which I 

informally propose to call the Cymbo- 
petalum tribe at this time, will be out- 
lined in this report. Since the characters 
under discussion are well developed 
in Cymbopetalum Benth., which typi- 
fies the salient trends of the genera in 
the tribe, and since this particular 
genus is represented by abundant, fresh 
material in my collections, the greater 
part of the following discussion is 
concerned with this genus. 

Angiosperm pollen exhibits a tre- 
mendous size range, from about 2 to 
5 [km in Myosotis L. (Boraginaceae) 
to over 200 utm in some species of 
flowering plants. Erdtman (3) con- 
siders medium-sized pollen to be be- 
tween 25 and 50 1/m, whereas grains 
in the range of from 100 to 200 ,um 
are termed very large and anything 
over 200 /um is called gigantic. There 
are approximately a dozen angiosperm 
families that have species of some 

genera with pollen grains close to or 

greater than 200 /tm (3, 4), including 
the Nyctaginaceae (Acleis,anthes A. 
Gray), Malvaceae (Kokia Lewton), 
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Cucurbitaceae (Cucurbita L.), Ona- 
graceae [Oenothera L. (= Megapterium 
Spach)], Convolvulaceae (Ipomoea 
L), Polemoniaceae (Cobaea Cav.), 
Dipsacaceae (Morina L.), Xyridaceae 
(Orectanthe Maguire & Wurdack), 
Musaceae (Musa L.), Zingiberaceae, 
and Marantaceae. Up to now the larg- 
est recorded pollen grains include 
those of Acleisanthes obtusa (Choisy) 
Standley ( = A. berlandieri Gray), 
with some grains about 230 [/m (3) 
and Cucurbita species, with pollen up 
to 250 [/m (5). Mention must also be 
made of the so-called nonfixiform, 
threadlike pollen of some marine angi- 
osperms, which may be over 2000 ,um 
(3), for example, Zostera L. (Zoster- 
aceae) and Cymodocea Koen. (Zanni- 
chelliaceae). The family Annonaceae 
must be added to the list of angio- 
sperm families with pollen grains 
larger than 200 Ipm. Grains averaging 
280 ,um occur in species of two genera 
in this family-Annona L. (A. rigida 
R. E. Fries) and Cymbopetalum. 
Cymbopetalum odoratissimum Barb. 
Rodr., with some individual grains as 

large as 350 ,um, probably represents 
the largest, fixiform pollen grain in the 

flowering plants (Fig. 1, A and B). The 
exine of this species may be 20 p/m 
thick, with columellae that are 15 p.m 

long. The tectal perforations in the 
exine may be as large as 15 /tm. 

The pollen wall (sporoderm) con- 
sists of two fundamentally different 
layers: an inner, more or less cellulosic 
layer (6) which is destroyed during 
pollen preparation by acetolysis-the 
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Unique Type of Angiosperm Pollen from the Family Annonaceae 

Abstract. The primitive angiosperm family Annonaceae possesses a renarkable 
type of pollen that appears unique in its size (diameter up to 350 micrometers), 
lack of exine over nearly 50 percent of the grain surface at maturity, and proxi- 
malipolar aperture. This unique pollen is further distinguished by being in 
polyads which are compartmentalized individually within septate stamens. 
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intine; and an outer, highly resistant 

layer, composed of so-called sporo- 
pollenins-the exine. Since most pol- 
len of living plants is prepared for 
study by acetolysis and the intine is 
lacking in fossil pollen, for all practical 
purposes the study of pollen morphol- 
ogy consists of the study of the exine. 
The genus Cymbopetalumn and, indeed, 

all the genera of the Cymbopetalum 
tribe represent the culmination of a 
trend within the pollen of the Anno- 
naceae toward the loss of nearly half 
of the exinous covering of the grain, 
so that the grains appear as if sec- 
tioned (Fig. 1B). 

In fresh material of Cymbopetalum, 
one can observe the crystalline, spheri- 

cal shell of the intine separating in an 
aqueous medium from the cap-shaped 
covering of exine and floating away. 
Paraffin-embedded sections through the 
mature stamens and pollen reveal a 
warty, differentially staining material 
that covers nearly half of the grain 
and dissolves during acetolysis. The 
occurrence of mature pollen grains 
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Fig 1 (above). Gigantic pollen grain of Cymbopetalum odoratissimum Barb. Rodr. .' 
(Annonaceae) (15). This species probably has the largest fixiform pollen grain among 
angiosperms, with some grains as large as 350 ,tm. (A) Distal face (about X 335). 
(B) Scanning electron micrograph of the proximal face (about X 335). Fig. 2 (right). (A) Tetrad of Asteranthe astelias (S. 
Moore) Engl. & Diels, showing proximal position of the aperture (15) (x 325). (B) Octad of Cymbopetalun gracile R. E. Fries 
(X 215). (C) Polyads of Porcelia steinbachii (Diels) R. E. Fries, showing septate condition of the stamen (X 215). 
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lacking essentially half of the exine is 

probably a unique feature of this 

family. 
Apertures are openings or thin areas 

in the exine through which the pollen 
tube usually emerges at the time of 
germination. The evolution of aper- 
tures in pollen grains was one of the 
major advances of the seed plants and 
aperture type is one of the most im- 

portant phylogenetic characters of pol- 
len grains. Pteridophytes, in the strict 
sense, do not have apertures; however, 
they do have nonhomologous, thin 
areas called tetrad scars by which the 
spores often open. It was in gymno- 
spermous plants that the first apertures 
evolved. Certain fossil gymnosperm 
pollen grains (for example, the pteri- 
dosperms) still have a tetrad scar on 
the proximal face (inward face of the 
meiotic tetrad) which is homologous 
to the tetrad scar of pteridophyte 
spores. The first true apertures, how- 
ever, evolved at the distal pole (facing 
outward in the meiotic tetrad). One 
of the earliest concepts developed in 
comparative pollen morphology was 
that uniaperturate pollen always has 
the aperture at the distal pole (7). 
The validity of this hypothesis for pol- 
len of the Annonaceae was first ques- 
tioned by Bailey and Nast (8), and 
since then, the true nature of the an- 
nonaceous aperture has been open to 
some question (3, 9). From a study of 
more than 25 annonaceous genera in 
which Itetrads or polyads occur, it is 
clear that in all except one of these 
the aperture is on the proximal face 
(Fig. 2A), not the distal pole as in all 
other known uniaperturate pollen. The 
genus Pseudoxandra R. E. Fries is of 
great palynological interest because 
one of its species (P. coriacea R. E. 
Fries) has a distal aperture, a second 
[P. williamsii (R. E. Fries) R. E. 
Fries] has a proximal one, and other 
species [P. guianensis (R. E. Fries) R. 
E. Fries, P. leiophylla (Diels) R. E. 
Fries, P. polyphleba (Diels) R. E. 
Fries] show transitional stages in the 
evolution of the distinctly annonaceous 
type of proximal aperture. 

Most mature pollen grains are soli- 
tary (monads) within the thecal cham- 
bers of the stamen, but in a number 
of angiosperm families they are in 
dyads, tetrads, polyads, or pollinia, 
which consist of the entire pollen mass 
of a thecal chamber. Although there 
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dyads (1), polyads are rare. There are 
only three families in which polyads 
are well known-Leguminosae-Mimo- 
soideae (10), Asclepiadaceae, and 
Orchidaceae. The latter two families 
are also the only angiosperm families 
with pollinia. The genus Hippocratea 
L. (Hippocrateaceae) also has 
polyads (11), as have genera in the 
Gentianaceae (12). To this rather re- 
stricted list may be added the seven 
annonaceous genera of the Cymbope- 
talum tribe as well as certain species 
of the more distantly related genus 
Xylopia L. [X. brasiliensis Spreng., X. 
ferruginea (Hk.f. & Th.) Hk.f. & Th., 
X. micans R. E. Fries, X. africana 
(Benth.) Oliv.]. Until now, the occur- 
rence of polyads in the Annonaceae 
was not recognized generally (13). 
The polyads in this family are easily 
disrupted by acetolysis, and clearing 
of stamens with careful dissection is 
often necessary to preserve them. 
From such studies the following types 
of polyads have been found: octads in 
Cymbopetalum (Fig. 2B), Cardiopeta- 
lum Schlecht., Froesiodendron R. E. 
Fries, Trigynaea Schlecht., and Dise- 
palum Hk.f.; polyads of 16 grains in 
Hornschuchia Nees; and variable poly- 
ads of 16, 18, 20; 24, or more grains 
in Porcelia Ruiz & Pav. (Fig. 2C) 
(14). It is interesting to note that 
Xylopia and all the genera of the 
Cymbopetalum tribe except Disepalum 
have transversely locellate anthers at 
maturity, with each polyad in a sepa- 
rate compartment within the stamen 
(Fig. 2C). 
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From such studies the following types 
of polyads have been found: octads in 
Cymbopetalum (Fig. 2B), Cardiopeta- 
lum Schlecht., Froesiodendron R. E. 
Fries, Trigynaea Schlecht., and Dise- 
palum Hk.f.; polyads of 16 grains in 
Hornschuchia Nees; and variable poly- 
ads of 16, 18, 20; 24, or more grains 
in Porcelia Ruiz & Pav. (Fig. 2C) 
(14). It is interesting to note that 
Xylopia and all the genera of the 
Cymbopetalum tribe except Disepalum 
have transversely locellate anthers at 
maturity, with each polyad in a sepa- 
rate compartment within the stamen 
(Fig. 2C). 
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sion along a C4 axis is called tetragonal 
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Quadratic Elongation: A Quantitative Measure of 

Distortion in Coordination Polyhedra 

Abstract. Quadratic elongation and the variance of bond angles are linearly 
correlated for distorted octahedral and tetrahedral coordination complexes, both 
of which show variations in bond length and bond angle. The quadratic elonga- 
tion is dimensionless, giving a quantitative measure of polyhedral distortion which 
is independent of the effective size of the polyhedron. 
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