
hinge region of the human yl chain 
show that, when a number of prolines 
occur as in the sequence Cys-Pro-Pro- 
Cys-Pro-Ala-Pro and when two such 
sequences are joined by a pair of di- 
sulfide bonds, a severe rigid distortion 
occurs. This interrupts the conforma- 
tional folding in the middle of the 
heavy chain between the second and 
the third intrachain disulfide loops, 
thereby imparting a looseness or ex- 
tended chain conformation that leads 
to an apparent flexibility in the struc- 
ture (23). Proline thus provides the 
rigid part of a flexible hinge. A dis- 
tortion due to proline is absent in the 
,p chain. However, it may be provided 
by the presence of the large, hydro- 
philic oligosaccharide which requires 
that the hinge region must be at the 
surface of the IgM pentamer. Incuba- 
tion at 60?C may partially separate 
the monomeric IgM subunits or the 
two ,t chains within the subunit, there- 
by making the Arg-Gly bond acces- 
sible to trypsin. The temperature effect 
is probably on the conformation of the 
immunoglobulin, rather than on the 
trypsin, for we find that incubation with 
thermolysin at 60?C, but not at 37?C, 
produces similar Fab/t and Fc/t pieces. 
Within each subunit the Fcut dimer is 
linked by two interchain disulfide 
bridges, one near the NH2-terminus 
and one at the COOH-terminus. The 
subunits are linked by the intersubunit 
bridge, which is not within the hinge 
region depicted in Fig. 1. 

Although papain often cleaves / and 
y chains at multiple sites to give hetero- 

geneous Fc fragments (2, 24), trypsin, 
which is a more specific enzyme, acts 

predominantly at a single site on the 
zt chain to produce an apparently 
homogeneous Fc,s piece. This is con- 
firmed by the behavior of Fc/u in im- 
munoelectrophoresis, immunodiffusion, 
and ultracentrifugation, and also by 
the finding of a unique amino acid se- 

quence with the sequencer. The specific 
enzymatic and chemical cleavage of 
IgM and the combined use of the se- 
quencer and of conventional sequencing 
techniques have greatly facilitated the 
determination of the amino acid se- 
quence of this protein, which has a co- 
valent molecular weight of about 1 
million. The same principles can be 
applied to other large molecules that 
have resisted the conventional methods 
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terioration of the outer rod segment oc- 
curred in conjunction with a decline of 
the protein component of the visual 
pigment, and a "substantial fraction" 
of the visual cell population seemed to 
undergo lysis and disappear. Treatment 
with retinoic acid, while relieving the 
systemic effects of the deficiency, 'had 
no influence on the progress of the 
retinal abnormality but greatly facili- 
tated the study of the advanced stages 
of the disease. 

We reinvestigated the effects of vita- 
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Vitamin A Deficiency Effect on Retina: 

Dependence on Light 

Abstract. The effects of vitamin A deficiency in the rat eye, as measured by the 

electroretinogram and changes in rhodopsin content, are critically dependent upon 
the levels of illumination to which the animals are exposed daily. Depleted animals 

kept in darkness maintained virtually normal electroretinogram function and 

rhodopsin content for 5 to 6 months while those kept in weak cyclic light lost 

rhodopsin continuously. A fraction of the retinol released from rhodopsin during 
illumination disappears presumably from the pigment epithelium into the blood 
and becomes unavailable for rhodopsin regeneration. A sequence of three first- 
order reactions was assumed to estimate the rate constant of this disappearance 
(0.03 per hour). Computer simulation supporting the experimental data illustrates 
the dependence of the retinal abnormalities on light. 
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min A deficiency on the rat retina in 

conjunction with experiments designed 
to elucidate the role of vitamin A in 
the damage produced by visible light 
(2). 

The experiments were performed on 
male albino rats from the Charles River 
Breeding Laboratory. They were main- 
tained on a deficient diet prepared com- 
mercially or in the laboratory. The con- 
trol animals (A+) were given retinol 
once weekly or as a dietary supplement. 
The A- animals received, instead, 
retinoic iacid starting generally in the 
6th to 8th week 1(3). Both groups of ani- 
mals remained in good health, and their 
gain in weight over a 20-week period 
was only slightly less than that of rats on 

ordinary commercial pellets. The ERG 
(4) was measured at set intervals during 
pentobarbital anesthesia. Rhodopsin was 
determined conventionally (5). Retinol 
and retinyl esters were estimated by 
fluorometry in extracts of retina, pig- 
ment epithelium (PE), and liver; thin- 
layer chromatography was used for sep- 
aration (5). Eyes were serially sectioned 
and stained with hematoxylin-eosin. 

Dowling and Wald (1) did not specify 
the lighting conditions under which 
their rats were maintained. Our results 
reveal that the development and prog- 
ress of vitamin A deficiency as ob- 
served in the retina by the decline in 

rhodopsin is primarily a function of 
the daily exposure to light. 

Figure 1 (rows 1 and 2) shows the 
ERG records of A+ and A- animals 
in response to a strong xenon flash 
(4) when these animals were kept con- 

tinuously in a dark environment after 

they were weaned. Even after 23 weeks 
on the deficient diet, the ERG of the 
A- animals was only slightly reduced 
compared with the records from A+ 
of the same age. The ERG threshold 
and the early-receptor potential (ERP) 
also changed very little. 

Results were very different, however, 
when the A- animals were kept in- 
stead on a day-night, 12-hour cycle of 
dim illumination and darkness (cyclic 
light). The ERG's of row 3 of Fig. 1 
are from animals housed from the time 
of weaning in a room illuminated dur- 
ing the day by a 100-watt incandescent 
ceiling light, which provided indirect 
illumination of 4 to 9 lux at the rack- 
mounted wire mesh or transparent 
plastic cages. Under this condition, the 
ERG decreased starting at 4 weeks. 

Typically, the decrease of the ERG 
in response to the strong flash was first 
noted by a reduction in the amplitude 
of the a-wave; the decline of the b-wave 
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was much slower, as was the fall of the 
three or four wavelets superimposed 
thereon. Once the a-wave had decreased 
to about one-third of its amplitude, the 
b-wave frequently had the "two- 
cusped" appearance described by Dowl- 
ing and Wald (1), a hump, or plateau, 
following a fast subsiding peak. The 
a-wave reduction was associated with 
a proportional fall in the ERP and a 
rise in ERG (b-wave) threshold. Thresh- 
old had increased by 1.0 to 1.5 log 
units when a-wave reduction was 50 

percent. 
Averaged data for the ERG from 

150 A- and 90 A+ animals maintained 
continuously in the dark are plotted in 
Fig. 2, upper part. With the use of the 
a-wave amplitude as the ERG measure- 
ment most directly related to visual cell 
function (6), differences between A+ 
and A- seem indeed to be very slight. 
In both groups of animals a-wave 

amplitude diminished with advancing 
age. A significantly faster decline in 
A- animals appeared only after 10 
weeks on the diet. At 20 weeks this dif- 
ference did not exceed 15 percent, on 
the average. 

As indicated by the lower part of 
Fig. 2, the a-wave decline during main- 
tenance in cyclic light varied in relation 
to the start of this condition. When 
cyclic lighting coincided with the start 
of the dietary regimen, the a-wave be- 
gan to diminish during the 4th week and 
declined rapidly during the next 5 weeks 
and then more slowly. Within 15 weeks 
its amplitude was about 10 percent of 
that of the appropriate A+ controls. 
Animals kept in darkness for six, nine, 
or more weeks and then exposed to 

cyclic light showed immediately the 
same decline. 

There were considerable variations 
from experiment to experiment; ex- 

periment 84 (Fig. 2) is an example of 
a rather slow initial decline, but we 
observed with other groups of animals 
still slower rates of change under the 
same lighting condition. These varia- 
tions did not correspond to different 
rates of vitamin A depletion of the 
liver. Early and continuous administra- 
tion of retinoic acid diminished the 

average decline to a very slight de- 

gree. 
Averaged data of the rhodopsin con- 

A- 

A- 

A- 
11D 

lOcy after relief 

lOcy 

6d 
after relief 

Fig. 1. The ERG during vitamin A deficiency elicited by a strong xenon flash. D, Ani- 
mals continuously maintained in darkness for the indicated number of weeks (for 
example, 4); cy, maintained for the indicated number of weeks in cyclic light. The 
arrows of the middle tracing in row 3 point to the two humps of the b-wave. The data in 
row 4 is from an experiment in which animals were maintained 11 weeks in darkness 
and then in the same cyclic light as animals of row 3; after 10 weeks in cyclic light, 
the deficiency was relieved. Calibration: 20 msec; 500 ,uv. Xenon flash is indicated by 
the slight artifact just preceding the start of the a-wave. 
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tent for the same groups of animals as 
in Fig. 2 are illustrated in Fig. 3. 
Rhodopsin of A+ animals kept in the 
dark increased almost steadily from 
1.5 nmole at 3 weeks to 2.6 nmole at 
20 weeks, while that of A- in the dark 
remained virtually constant between the 
5th and 20th weeks at 1.56 (7). Rho- 

dopsin of A- animals maintained in 
cyclic light showed an almost linear 
fall, starting simultaneously with the 
fall of the ERG, whereas rhodopsin of 
the A+ controls was constant at about 
1.8 nmole. A 50 percent reduction of 
the a-wave corresponded to a 30 per- 
cent loss of rhodopsin (8). When the 
a-wave had fallen to 14 percent after 
15 weeks, the rhodopsin was as low as 
21 percent. In Dowling and Wald's ex- 

periments, the rhodopsin level after 12 
to 15 weeks on the diet was 4 percent, 
suggesting that the light condition in 
their experiments (9) was not as mild 
as ours. 

The rate of rhodopsin decline there- 
fore depended upon the intensity and 
duration of light exposure. For exam- 

ple, continuous exposure to green light 
at 1500 lux (2) for 40 hours of a defi- 
cient animal produced the same rho- 

dopsin loss and a-wave reduction as 8 
weeks in the cyclic light. Or, when a 
40-watt light was used for cyclic illumi- 
nation instead of the 100-watt light, the 
rate of rhodopsin depletion was slowed 

and a standard a-wave reduction which, 
in the 100-watt light developed in 2/2 
weeks after liver depletion, occurred in 
6 to 7 weeks. 

The ERG and rhodopsin after sev- 
eral weeks in cyclic light remained low 
when the light was replaced by con- 
tinuous darkness. Relief of the defi- 
ciency by a high dose of retinyl acetate 
resulted in normalization whether or 
not the animals were put into dark or 
continued in cyclic light. The time re- 
quired for recovery varied directly 
with the degree of rhodopsin depletion 
and especially with the length of time 
this depletion existed prior to relief. 
Animals that had a markedly reduced 
ERG for 1 to 2 months required more 
than 1 week for ERG recovery, which 
was significantly faster than the attain- 
ment of near-normal rhodopsin levels. 

Irreversible histological changes (10), 
manifested by visual cell death (reduc- 
tion in the number of visual cell nuclei) 
or loss of inner and outer segments, 
were not observed in our experiments, 
which lasted 6 months on the deficient 
diet with exposure to the cyclic light 
for up to 12 weeks. Changes in the ap- 
pearance of the outer segments (10), 
especially a shortening of their length, 
were evident in retinas of nonrelieved 
animals in which rhodopsin content had 
fallen below 25 percent during eight or 
more weeks in cyclic light. 

The crucial factor in the develop- 
ment of the signs of vitamin A defi- 
ciency and their dependence upon the 
lighting conditions must be the disap- 
pearance of retinol from the retina 
after rhodopsin bleaching. In order to 
estimate the rate of this disappearance, 
we assumed a sequence of three reac- 
tions. (i) Light leads to the reversible 
release of retinol from rhodopsin; (ii) 
retinol is transferred from the retina (r) 
to the pigment epithelium (PE) for stor- 
age in the light; and (iii) in animals 
depleted of vitamin A, retinol disap- 
pears from PE into the blood (b). These 
reactions were considered first order: 

k1 (hl) ka 
rhodopsin retinol (r) 

7\ !;. 
2 4 

retinol (PE) k, retinol (b) 

The basis for our computations was 
measurements of rhodopsin and retinol 
in nondeficient animals (Fig. 4). The 
animals were exposed to strong light 
(2) which decreased rhodopsin from 2.0 
to 0.3 nmole within 30 minutes. Reti- 
nol in the retina reached a maximum 
after 10 minutes while its concentration 
in PE continuously increased during 50 
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between the retina and PE was 1 :4.5, 
which agrees with the results of Dow- 

ling (11). Averaged data for the re- 
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Fig. 2 (left). Average amplitude of a-wave during vitamin A deficiency, weeks on diet. (Upper) Animals kept continuously in 
the dark [A(-); A(+)]. (Lower) Animals maintained 12 hours per day in dim light, starting as indicated. Lines were drawn 
through averaged data of different experiments (such as experiment 67), each with 15 to 40 animals. Average a-wave amplitude 
of A + (not shown) declined in cyclic light from 640 ,/v at the 4th week, through 600 A/v at the 9th week, to 590 ltv at the 18th 
week (note A). The ERG test was always preceded by 18 to 24 hours of darkness when the animal was kept in cyclic light. Fig. 
3 (right). Rhodopsin per retina of animals maintained in darkness (upper) or in cyclic light (lower) for the same experiments 
as in Fig. 2. Dissection of the retina followed ERG test by 4 to 24 hours, depending upon the strength of the light flashes used 
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Several years ago the surprising find- 
ing was made that visible light at in- 
tensities which are ordinarily encount- 
ered is damaging to the retina of rats 
(1). The most striking manifestation of 
this damage was the widespread death 
of the visual cells in association with 
the degeneration of the pigment epithe- 
lium (PE) and an irreversibly low or 
extinct electroretinogram (ERG). The 
effect was most easily produced and 
studied in albino rats, but pigmented 
(hooded) rats showed about the same 
damage for the same retina irradiation. 
The deleterious effect has also been ob- 
served in the wild-strain kangaroo rat 
as well as in hamsters of different 
strains, in the Swiss mouse, and in the 
nocturnal Galago monkey. The rat, 
however, seems to be the most sensitive 
animal, a finding which does not favor 
the indiscriminate use of rats in vision 
and retina studies. 

The damage is a function of irradia- 
tion and exposure time. Minimum ef- 
fects are produced with the equivalent 
of about 1 utw per square centimeter of 
500-nm radiation applied diffusely over 
the retina (1). Typically, an environ- 
ment illuminated by incandescent light 
to about 110 lux is damaging if it is 
maintained continuously for 7 to 10 
days. Irradiation ten times stronger 
has a deleterious effect within 24 hours, 
but, when body and eye temperature 
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are raised, damage results from ex- 
posure for 1 or 2 hours only (1). 

The damage is graded mainly by the 
size of the irreversibly affected area of 
the retina. The weakest histological 
manifestation in the albino rat, exposed 
freely moving in a cage, is a small 
lesion less than /2 mm in diameter in 
the upper nasal region. As damage in- 
creases, this area becomes larger and 
may extend over the whole globe, re- 
sulting in a retina composed only of 
the inner layers (1). 

The effect seems important not only 
because it illustrates neglected aspects 
of vertebrate photoreceptor biology but 
also because it provides new insights for 
the study of degenerative visual cell dis- 
eases. Ordinary daylight or artificial 
light has never been considered a pos- 
sible hazard, except for focusing the 
sun or equivalent sources upon the ret- 
ina, quite in contrast to exposing the 
skin and, in analogy, to the known re- 
lation between cochlear hair cell dam- 
age and sound pressure. Indeed, the 
eye seems protected against overex- 
posure by a heavy pigment coat that 
limits light entry to the pupil, by pupil- 
lary reflex constriction, squinting, and 
others. 

Four different mechanisms were con- 
sidered as possible causes of the dele- 
terious effect of visible light: (i) ther- 
mal injury, (ii) photodynamic injury 

SCIENCE, VOL. 172 

are raised, damage results from ex- 
posure for 1 or 2 hours only (1). 

The damage is graded mainly by the 
size of the irreversibly affected area of 
the retina. The weakest histological 
manifestation in the albino rat, exposed 
freely moving in a cage, is a small 
lesion less than /2 mm in diameter in 
the upper nasal region. As damage in- 
creases, this area becomes larger and 
may extend over the whole globe, re- 
sulting in a retina composed only of 
the inner layers (1). 

The effect seems important not only 
because it illustrates neglected aspects 
of vertebrate photoreceptor biology but 
also because it provides new insights for 
the study of degenerative visual cell dis- 
eases. Ordinary daylight or artificial 
light has never been considered a pos- 
sible hazard, except for focusing the 
sun or equivalent sources upon the ret- 
ina, quite in contrast to exposing the 
skin and, in analogy, to the known re- 
lation between cochlear hair cell dam- 
age and sound pressure. Indeed, the 
eye seems protected against overex- 
posure by a heavy pigment coat that 
limits light entry to the pupil, by pupil- 
lary reflex constriction, squinting, and 
others. 

Four different mechanisms were con- 
sidered as possible causes of the dele- 
terious effect of visible light: (i) ther- 
mal injury, (ii) photodynamic injury 

SCIENCE, VOL. 172 

Irreversible Effects of Visible Light on the Retina: 

Role of Vitamin A 

Abstract. Diffuse retinal irradiation by visible light produces in the rat the 
death of visual cells and pigment epithelium. Typically, cage illumination of 1500 
lux from fluorescent light through a green filter leads to severe damage when con- 
tinued for 40 hours. Vitamin A deficiency protects against this damage but ex- 
periments show that retinol released by light from rhodopsin is probably not the 
toxic agent. Protection against light damage depends on a long-range state of cell 
adaptation to light itself. The normal diurnal cycle of light and dark seems to be 
the essential factor in controlling visual cell viability and susceptibility. 
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