
20 percent of darker mare material. 
(iii) Bright craters and rays in the 
maria darken and redden in situ by 
vitrification of the ilmenite-rich basalt 
(by micrometeoroid impacts) and by 
mechanical mixing with preexisting 
dark fines. (iv) Bright craters in the 
highlands darken largely by the addi- 
tion of material derived from the 
maria, which is mixed with highland 
material and is partially vitrified. 
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The O18/ 016 analysis of deep-sea 
cores, together with absolute dating by 
C14 and by methods based on the decay 
products of the two uranium families, 
has changed drastically the classical 
picture of the Pleistocene as given, for 
instance, by Schuchert and Dunbar (1). 
Not only has postglacial time been re- 
duced to 10,000 years but also the pre- 
ceding several hundred thousand years 
have been shown to include rapidly 
alternating glacial and iinterglacial 
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events exhibiting an average periodicity 
of about 50,000 years. High-tempera- 
ture events in the deep-sea cores were 
identified by odd integers increasing 
with time, low-temperature events by 
even integers (2). The amplitude of the 
temperature oscillations of the surface 
seawater at low altitudes appears to 
have increased by about 10 percent 
toward the present, but age 3, the tem- 
perate age preceding the present inter- 
glacial, is unique in that it does not ex- 
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hibit temperatures as high as those of 
the warm ages before or after [see (3) 
for a possible explanation]. These re- 
sults were recently reviewed in Science 
(4, 5). 

Because temperature did not reach 
fully interglacial values during age 3, 
the age closest to us in time which 
offers conditions most closely resem- 
bling the present ones is age 5. Twelve 
long deep-sea cores from the Atlantic 
Ocean and adjacent seas have been 
analyzed so far (2, 3, 6-9), all includ- 
ing stage 5 as well as the adjacent 
stages 4 and 6. The numerous isotopic 
curves thus available have been used to 
reconstruct a detailed generalized iso- 
topic curve from which much of the 
stratigraphic noise is filtered out (Fig. 
1). The time scale is provided by C14 
and Th230/Pa231 measurements (9, 10). 

The generalized curve is very charac- 
teristic. From stage 7, the curve slopes 
down to the minimum of stage 6, dated 
at about 105,000 years before the pres- 
ent. Following a minor inflection, the 
curve rises rapidly to a major maximum 
dating from about 95,000 years B.P. 
This maximum, representing tempera- 
tures as high as those of the last hypsi- 
thermal, has a duration of only a few 
thousand years. The isotopic curve then 
drops to a minimum that is intermedi- 
ate in value between interglacial maxi- 
ma and glacial minima. This minimum, 
dating from about 90,000 years B.P., 
is followed by a similar minimum 
about 10,000 years later. Between the 
two minima and following the second 
one, the isotopic curve rises, but it 
reaches only half way up toward the 
value of the major maximum of 95,000 
years B.P. For much of age 5, there- 
fore, temperature was appreciably lower 
than today. This age came to an end 
about 70,000 years ago, when tempera- 
ture began dropping toward the mini- 
mum of age 4. This time coincides with 
the extinction of the pelagic foramini- 
feral subspecies Globorotalia menardii 
flexuosa. The minimum of age 4 was 
reached about 10,000 years later, or 
60,000 years ago. The characteristic 
isotopic trend of age 5 was noticed be- 
fore (3) and has been discussed in some 
detail by Shackleton (11), who defined 
as substages the three isotopic maxima 
and the two intervening minima occur- 
ring within age 5. 

The amplitude of the isotopic oscilla- 
tions within age 5 increases from the 
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Caribbean-equatorial Atlantic to the 
North Atlantic [core 280, see (7)] and 
the Mediterranean [core 189, see (6)]. 
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Abstract. The 018/O16 analysis and Th230/Pa231 dating of deep-sea cores 
showed that the last interglacial age, with an early major temperature maximum 

followed by two smaller ones, extended from 100,000 to 70,000 years ago and 
was preceded by a glacial age extending from 120,000 to 100,000 years ago. 
The 018/016 analysis and Th230/U234 dating of speleothems confirm and refine 
these ages. 
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Particularly strong are the variations 
in the Mediterranean core, with the sub- 
age minima of age 5 exhibiting rela- 
tively high 018/O16 ratios. 

All cores show that temperature rose 
very rapidly during anathermal 6/5 
(12). A similarly rapid temperature 
rise occurred during anathermal 2/1, 
that is, during the last deglaciation. 
Because of continuous reworking by 
metazoans living on the sea floor, even 
an instantaneous change will be re- 
corded as a gradient in deep-sea sedi- 
ments of normal globigerina-ooze facies. 
Broecker et al. (13) showed that a 
major portion of the temperature rise 
leading from age 2 (Main Wiirm or 
Main Wisconsin) into age 1 (the pres- 
ent interglacial) could have taken place 
within a time interval as short as 
1,000 years about 11,000 years ago. At 
least 70 percent of the glacial ice had 
disappeared by then (14), however, so 
that the rapid temperature change at 
11,000 years may not -have resulted 
from major continental deglaciation 
but, possibly, from a rapid decrease in 
albedo associated with thawing of the 
northern North Atlantic when northern 
summers came to coincide with terres- 
trial perihelion (15). 

The resolution of rapid climatic 
events, which is not better than about 
3,000 years in deep-sea sediments of 
normal globigerina-ooze facies, may be 
much greater in other deposits. Using 
marine shells (food refuse) from the 
Haua Fteah cave of Cyrenaica, Emiliani 
et al. (16) were able to reconstruct the 
trend of both summer and winter tem- 
peratures during the past 15,000 years 
and to show that much of the tem- 
perature rise during the anathermal 
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Fig. 1. (A) Isotopic paleo- 
temperature curve from 
deep-sea cores (with age 
or stage numbers above 
abscissa); (B) 018/O16 
ratios (a per mil) in New 
Zealand speleothems; and 
(C) 018/O01 ratios (a per 
mil) in speleothems from 
southern France. Curves 
are approximate tracings 
of original data. 

2/1 was very rapid indeed (see Fig. 2). 
An excellent resolution may be of- 

fered also by speleothems, as noticed 
by Hendy and Wilson (17). Fornaca- 
Rinaldi et al. (18) and Duplessy et al. 
(19) discussed the various factors affect- 
ing the oxygen and carbon isotopic 
composition of speleothems. Fornaca- 
Rinaldi et al. (18) obtained an average 
oxygen isotopic composition of -5.8 

30 

25 

? 20- 

i- 1- 
cA 

Ixl 
V 5^ 

per mil from a stalagmite grown upon 
a Roman tile in a cave near Siena, Tus- 
cany; Labeyrie et al. (20) and Duplessy 
et al. (19) obtained values of about -6 
per mil for modern stalagmites in caves 
in the region of Nimes, southern 
France; and Hendy and Wilson (17) 
obtained values of -3.5 per mil for the 
modern layers of a stalactite from the 
Waitomo caves, about 30 km inland 
from the west coast of the North 
Island, New Zealand. These values, 
compared with the regional oxygen iso- 
topic composition of atmospheric pre- 
cipitation [-7, -7, and -4.5 per mil, 
respectively; see (21)] and the regional 
temperatures (average, 15?, 16?, and 
15?C, respectively), clearly indicate 
that the speleothem calcite has been de- 
posited at, or close to, isotopic equi- 
librium in all cases. 

The speleothems from the Waitomo 
caves of New Zealand, analyzed by 
Hendy and Wilson (17), extend from 
modern time to the last interglacial, as 
shown by C14 and 018/016 analysis 
(17, figures 1, 2, and 3; this report, 
Fig. 1). The 0l8/016 ratio ranges from 
-3.7 per mil for the postglacial hypsi- 
thermal to -2.5 per mil for the maxi- 
mum of the last glaciation. The differ- 
ence is thus 1.2 per mil. A similar gla- 
cial-interglacial difference (1.3 per mil) 
is exhibited by the stalagmite from 
southern France analyzed by Duplessy 
et al. (22, 23). This stalagmite extends 
from the temperature peak of the last 
interglacial (age 5) to the end of the 
preceding interglacial (end of age 7), 
as shown by the 08/O16 values and by 
Th230/U234 dating (Fig. 1). A layer 
near the top, 77 cm thick and ranging 
in age from 91,000 to 97,000 years 
B.P., gave 018/016 values ranging from 
-5.5 to -6.3 per mil, with a weighted 
average of -5.9 per mil (22, table 1). 
This average is identical to the values 
mentioned above for the modern stalag- 
mite from the same cave (19), indicat- 
ing deposition under similar conditions. 
The underlying 1-m thick layer, ranging 
in age from 97,000 to about 122,000 
years, has an 018/016 composition 
ranging from -4.5 to -5.2 per mil, 
with a weighted average of -4.6 per 
mil. This average is 1.3 per mil heavier 
than that of the layer above. In the bot- 
tom layer, about 32 cm thick and rang- 
ing in age from 122,000 to 130,000 
years B.P., the O18/016 ratio increases 

Fig. 2. Changes in summer (upper curve) 
and winter (lower curve) temperatures 
during the last deglaciation in the Mediter- 
ranean [from (16)]. 
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back in time to a value of -5.9 per 
mil, again identical to the modern 
value. It is apparent that the bottom 
layer of this stalagmite was deposited 
toward the end of age 7, the intermedi- 
ate layer during age 6, and the top 
layer during the temperature maximum 
of age 5. The oxygen isotopic trend of 
the speleothems from both southern 
France and New Zealand parallels 
closely that of the generalized paleo- 
temperature curve (Fig. 1) obtained 
from the deep-sea cores. 

The Th230/ U234 analysis of the 
stalagmite from southern France, which 
is discussed by Duplessy et al. (22) 
and which is apparently quite accurate 
(24), dates a temperature decline from 
130,000 to 120,000 years ago (end of 

age 7); a major glaciation from 
120,000 to 97,000 years B.P. (age 6); 
and a major interglacial maximum 
from 97,000 to 91,000 years B.P. (tem- 
perature maximum of age 5). This 
chronology is identical to that of the 
deep-sea cores and provides an im- 
portant, independent verification. In 
addition, it pinpoints the age of ana- 
thermal 6/5 at 97,000 years B.P. and 
the age of the stage 5 hypsithermal at 
95,000 years B.P. 

Absolute dating of this stalagmite 
also shows a considerable variation in 
calcite precipitation rates [see (24)], 
averaging 3.2 cm per 1000 years be- 
tween 120,000 and 100,000 years ago 
(glacial age 6) and 14.5 cm per 1000 
years from 100,000 to 92,000 years 
B.P. (mostly interglacial age 5). Par- 
ticularly high rates (60 cm per 1000 
years) seem to have occurred between 
93,000 and 92,000 years B.P., during 
the first minor temperature minimum 
immediately following the temperature 
maximum of age 5. In maritime regions 
such as southern France, Italy, and 
New Zealand, it seems likely that, 
judging from the generally dry state of 
the caves today (partly produced by 
regional deforestation, however), speleo- 
them accumulation was maximum dur- 
ing minor interglacial temperature de- 
creases, minimum during glacial ages 
(25), and intermediate otherwise. 

The particular significance of the 
work on speleothems discussed above 
is threefold: (i) it reveals very clearly 
the major glacial-interglacial climatic 
variations; (ii) it affords a greater time 
resolution than deep-sea deposits; and 
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such as southern France, Italy, and 
New Zealand, it seems likely that, 
judging from the generally dry state of 
the caves today (partly produced by 
regional deforestation, however), speleo- 
them accumulation was maximum dur- 
ing minor interglacial temperature de- 
creases, minimum during glacial ages 
(25), and intermediate otherwise. 

The particular significance of the 
work on speleothems discussed above 
is threefold: (i) it reveals very clearly 
the major glacial-interglacial climatic 
variations; (ii) it affords a greater time 
resolution than deep-sea deposits; and 
(iii) it provides an absolute time scale 
independent of the one obtained from 
the deep-sea sediments. The results 
presently available confirm that age 7 
ended about 120,000 years ago; age 6 
extended from 120,000 to 97,000 years 
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ago; and the major temperature maxi- 
mum of age 5 dates from 95,000 years 
ago. Thus, the time scale of Rosholt 
et al. (9) and of Rona and Emiliani 
(10) is closely verified for this impor- 
tant time interval. 
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Proton magnetic resonance (PMR) 
has become increasingly used in the 
study of macromolecular systems. At- 
tempts have been made to understand 
the discouragingly broadened, still 
"high-resolution," spectrum which is 
often typical of the proton resonance 
of proteins in solutions (1). I now re- 
port a technique which has enabled the 
unambiguous identification of metal- 
binding sites of a biological polyelectro- 
lyte and which may have promise in 
the study of metal-activated enzymes 
and other metallo-proteins. 

I have obtained a rather promising 
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fit to the 100-Mhz PMR spectrum of a 
random-coil protein (2) (gelatin) solu- 
tion. This has been achieved by consid- 
ering the superposition of the side- 
chain resonances which were deter- 
mined by examining the PMR spectra 
of model compounds such as homopoly- 
peptides, protein derivatives, and amino 
acids (3). Briefly, with a knowledge 
of the amino acid composition, the in- 
tegrated intensity of each resonance 
pattern is scaled relative to a known 
reference peak from the spectrum (the 
unresolved methyl resonances of leu- 
cine, isoleucine, and valine at highest 
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Protein-Metal Ion Binding Site: Determination with 

Proton Magnetic Resonance Spectroscopy 

Abstract. Proton magnetic resonance spectra of aqueous gelatin were analyzed 
with respect to composition and molecular interactions. Aqueous gelatin corn- 
plexes cobaltous ions in the pD range of 3.5 to 7.5. Glutamyl and aspartyl side 
chains are shown to be the sites of binding. 
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