
indirectly to slow embryonic develop- 
ment by preventing lutein cells from 
functioning maximally. A similar mech- 
anism has 'been postulated as the cause 
of embryonic diapause in the tammar 
wallaby Macropus eugenii (7). Alter- 
natively, diapause may be caused by the 
temporary lack of some factor in the 
uterine environment, such as a uterine 
protein that governs blastocyst growth 
(8). 

Although not a common reproductive 
pattern in bats, delayed implantation or 
development is known to occur in sev- 
eral other species of Chiroptera. Only 
one nonhibernating species, Eidolon, 
helvum (family Pteropidae) from 
Uganda (0?), is known to undergo de- 
layed implantation (9). Females of this 
frugivorous species are fertilized in 
April or May, but implantation does 
not occur until October or November; 
a single young is born in February or 
March. The time of both implantation 
and birth coincide with peaks in rain- 
fall. In the "quasi-hibernating," tem- 
perate-dwelling phy'lostomid Macrotus 
waterhousii, fertilization occurs between 
September and November, and embry- 
onic development proceeds slowly dur- 
ing the winter; the young are born in 
June (10). Wimsatt (11) inferred from 
Bradshaw's incomplete account that 
this may represent another case of de- 
layed implantation, but definite proof 
of this is lacking. As a final example, 
Miniopterus schreibersii (family Vesper- 
tilionidae), a true hibernator, displays 
delayed implantation during its period 
of winter dormancy (11). In this spe- 
cies, fertilization occurs before the bats 
enter hibernation, but implantation 
does not occur until after spring arousal 
so that the young are born in the early 
summer. 

Although the ecological settings of 
the different bats which display delayed 
implantation or development are varied, 
the timing of events is such as to allow 
young to be born at energetically fa- 
vorable times of the year. This seems 
to be the case in A. jamaicensis. Blasto- 
cysts conceived in Panama in July 
through September and developing di- 
rectly would result in births occurring 
in November through January. This 
means that females would be pregnant 
or lactating and young would be weaned 
at times when the availability of fruit 
is relatively low. Therefore, delayed 
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jamaicensis seems relatively clear, the 
proximate factors behind this adapta- 
tion are unknown and suggest an obvi- 
ous area for further study. 
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Synergy of Ethanol and a 

Natural Soporific-Gamma Hydroxybutyrate 

Abstract. y-Hydroxybutyrate and ethanol, as well as y-butyrolactone and eth- 
anol, are potentiative with respect to duration of loss of the righting reflex (sleep 
time). The concentration of ethanol in the liver decreases from 30 to 90 minutes 
after rats are injected with ethanol, but there is no change when ethanol is in- 
jected with y-butyrolactone. In view of the fact that y-hydroxybutyrate is a 
natural intermediate in brain, the effects of ethanol on the central nervous system 
may be mediated through its interaction with y-butyrolactone. 
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phenathiazine derivatives, and the bar- 
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higher in the GBL-injected animals 
than in the group injected with the 
combination. 

Concentrations of these compounds 
were next determined at fixed times 
after an ethanol injection of 6.51 
mmole/100 g or a GBL dose of 0.25 
mmole/100 g. The animals were killed 
30 and 90 minutes later, the approxi- 
mate waking times of the two groups 
(Fig. 4). If one compares the effect of 
ethanol alone with that of the combina- 
tion for each tissue and each dose, at 
30 and 90 minutes, there is only one 
significant difference. The content of 
ethanol in the livers of rats injected 
with ethanol alone is significantly high- 
er at 30 minutes than at 90 minutes 
(P < .02); that is, there is a significant 
decrease with time. There is no signifi- 
cant decrease in the ethanol concentra- 
tion in the livers of the combination-in- 
jected animals from 30 to 90 minutes, 
and there is no significant difference 
between combination- and ethanol-in- 
jected animals at 90 minutes. Bustos 
et al. (14) have shown that in rats 
injected with or without pyrazole (a 
known inhibitor of alcohol dehydro- 
genase in vitro and in vivo) there is no 
significant difference in the concentra- 
tion of ethanol in the blood until 4 to 8 
hours after ethanol injections. It might 
also be added that in the work showing 
a prolongation of ethanol sleeping time 
after prior treatment with cortisone 
there were no differences in concentra- 
tions of ethanol in the blood upon 
waking (3). 

We have confirmed the observations 
(4) that there is a peak corresponding 
to GBL in flor sherry (15). This peak 
cochromatographs with standard GBL 
and is present at approximately 1.5 
mmole/liter. This is much less than the 
amount required for even the lowest 
level of synergy that we have studied 
in the rat. For a 70-kg man to ingest 
GBL to a dose of 2.5 mmole/kg he 
would have to drink 115 liters of 
wine. 

It would appear therefore that GBL 
alone does not contribute significantly 
to the well-known pharmacologic effect 
of wine. However, we have observed a 
behavioral interaction of ethanol with 
GBL and GHB, known soporific com- 
ponents of the central nervous system. 
The metabolisms of both compounds 
require NAD, and thus there is the 

higher in the GBL-injected animals 
than in the group injected with the 
combination. 

Concentrations of these compounds 
were next determined at fixed times 
after an ethanol injection of 6.51 
mmole/100 g or a GBL dose of 0.25 
mmole/100 g. The animals were killed 
30 and 90 minutes later, the approxi- 
mate waking times of the two groups 
(Fig. 4). If one compares the effect of 
ethanol alone with that of the combina- 
tion for each tissue and each dose, at 
30 and 90 minutes, there is only one 
significant difference. The content of 
ethanol in the livers of rats injected 
with ethanol alone is significantly high- 
er at 30 minutes than at 90 minutes 
(P < .02); that is, there is a significant 
decrease with time. There is no signifi- 
cant decrease in the ethanol concentra- 
tion in the livers of the combination-in- 
jected animals from 30 to 90 minutes, 
and there is no significant difference 
between combination- and ethanol-in- 
jected animals at 90 minutes. Bustos 
et al. (14) have shown that in rats 
injected with or without pyrazole (a 
known inhibitor of alcohol dehydro- 
genase in vitro and in vivo) there is no 
significant difference in the concentra- 
tion of ethanol in the blood until 4 to 8 
hours after ethanol injections. It might 
also be added that in the work showing 
a prolongation of ethanol sleeping time 
after prior treatment with cortisone 
there were no differences in concentra- 
tions of ethanol in the blood upon 
waking (3). 

We have confirmed the observations 
(4) that there is a peak corresponding 
to GBL in flor sherry (15). This peak 
cochromatographs with standard GBL 
and is present at approximately 1.5 
mmole/liter. This is much less than the 
amount required for even the lowest 
level of synergy that we have studied 
in the rat. For a 70-kg man to ingest 
GBL to a dose of 2.5 mmole/kg he 
would have to drink 115 liters of 
wine. 

It would appear therefore that GBL 
alone does not contribute significantly 
to the well-known pharmacologic effect 
of wine. However, we have observed a 
behavioral interaction of ethanol with 
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ponents of the central nervous system. 
The metabolisms of both compounds 
require NAD, and thus there is the 
possibility of a competition for this co- 
factor. Such an antagonism has con- 
siderable precedent in the explanations 
"for many of the known acute effects 
of ethanol administration" (16). This 
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increase in the tissue reductive capac- 
ity accompanying alcohol metabolism 
might tend to favor the conversion of 
succinate semialdehyde to GHB. There 
are similarities of actions that might 
also play roles in the synergy of these 
compounds. Acetaldehyde and GBL 
both cause increases in brain acetyl- 
choline (17). Hahn and co-workers 
(18) have shown that there is a poten- 
tiation of ethanol-induced sleep time 
with an increase in brain dopamine; 
and GHB and GBL have been shown 
to cause increases in brain dopamine 
(19). There is the possibility of an 
active intermediate or intermediates 
formed when both substances are pres- 
ent simultaneously. 

E. R. MCCABE, E. C. LAYNE 
D. F. SAYLER 

N. SLUSHER, S. P. BESSMAN 

Department of Pharmacology, 
University of Southern California, 
2025 Zonal Avenue, Los Angeles 90033 

References and Notes 

1. Synergy in this report refers to both the 
additive and the potentiative interactions of 
drugs. 

2. J. Mardones, in Physiological Pharmacology- 
A Comprehensive Treatise, W. S. Root and 
F. G. Hofman, Eds. (Academic Press, New 
York, 1963), vol. 1, section V, pp. 139-140. 

3. E. B. Goodsell, Fed. Proc. 20, 170 (1961). 
4. A. D. Webb, R. E. Kepner, W. G. Galetto, 

Amer. J. Enol. Viticul. 15, 1 (1964); A. D. 

increase in the tissue reductive capac- 
ity accompanying alcohol metabolism 
might tend to favor the conversion of 
succinate semialdehyde to GHB. There 
are similarities of actions that might 
also play roles in the synergy of these 
compounds. Acetaldehyde and GBL 
both cause increases in brain acetyl- 
choline (17). Hahn and co-workers 
(18) have shown that there is a poten- 
tiation of ethanol-induced sleep time 
with an increase in brain dopamine; 
and GHB and GBL have been shown 
to cause increases in brain dopamine 
(19). There is the possibility of an 
active intermediate or intermediates 
formed when both substances are pres- 
ent simultaneously. 

E. R. MCCABE, E. C. LAYNE 
D. F. SAYLER 

N. SLUSHER, S. P. BESSMAN 

Department of Pharmacology, 
University of Southern California, 
2025 Zonal Avenue, Los Angeles 90033 

References and Notes 

1. Synergy in this report refers to both the 
additive and the potentiative interactions of 
drugs. 

2. J. Mardones, in Physiological Pharmacology- 
A Comprehensive Treatise, W. S. Root and 
F. G. Hofman, Eds. (Academic Press, New 
York, 1963), vol. 1, section V, pp. 139-140. 

3. E. B. Goodsell, Fed. Proc. 20, 170 (1961). 
4. A. D. Webb, R. E. Kepner, W. G. Galetto, 

Amer. J. Enol. Viticul. 15, 1 (1964); A. D. 

the maternal and paternal strains, thus 
of the low sex ratio. 

Limited parthenogenetic development 
of mouse embryos has been observed 
after electrification of the oviduct (1) 
or treatment of ova in vitro with 
hyaluronidase (2). Edwards (3) found 
some gynogenetic development in eggs 
of mice inseminated with sperm that 
had been subjected to various treat- 
ments. Gynogenesis is a special form of 
parthenogenesis that follows activation 
of the egg by a sperm without contri- 
bution of genetic material. Individuals 
produced by parthenogenesis are called 
parthenotes (4). Successful develop- 
ment from haploid cells would be more 
likely in the inbred strains of labora- 
tory rodents or their hybrids because 
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excluding parthenogenesis as the cause 

taneous teratomas from male diploid 
primordial germ cells, is almost unique 
for mice of inbred strain 129, but tera- 
tomas can be induced experimentally 
in several other inbred strains and hy- 
brids (5). 

If numbers of parthenotes develop, 
one would expect to find an altered sex 
ratio with females predominating. The 
sex ratio of many inbred strains of 
mice have been examined (6) but only 
in PHL and BALB/cGnDgWt (7) is 
there a significant excess of females 
(58.2 and 60.8 percent, respectively). 
In neither case is the mechanism under- 
stood. The abnormal sex ratio appears 
regularly in the offspring from matings 
between PHL males and females from 
other strains but only in certain geno- 
types of the crosses that use BALB/cWt 
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Parthenogenesis: Does It Occur Spontaneously in Mice? 

Abstract. If parthenogenesis occurred in bisexual organisms, it would produce 
an excess of females and depress the sex ratio. The phenotypes of female mice, 
from matings that produce an excess of females, were examined for evidence 
of the presence of marker genes of paternal origin. All proved to be hybrids of 
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