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Hyperoxaluria in L-Glyceric Aciduria: Possible 

Pathogenic Mechanism 

Abstract. The effect of hydroxypyruvate on synthesis of oxalate at 

from glyoxylate was studied in in vitro preparations from normal hun 

cytes and leukocytes, rat liver, and with purified lactate dehydrog 
beef heart. In the presence of reduced nicotinamide adenine dinucleotic 

pyruvate stimulated the oxidation of glyoxylate to oxalate and de 
reduction of glyoxylate to glycolate. These findings may explain the hy 
seen in L-glyceric aciduria (type II primary hyperoxaluria). 
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L-Glyceric aciduria (primary hyper- 
oxaluria, type II) is a metabolic disease 
secondary to a genetic defect in D-gly- 
eerie dehydrogenase, an enzyme which 
catalyzes the reduction of hydroxypyru- 
vate to D-glycerate in the degradative 
pathway of serine metabolism (Fig. 1) 
(1). It is presumed that hydroxypyru- 
vate accumulates and is reduced by 
lactate dehydyrogenase to L-glycerate, 
which is excreted in large amounts 
(300 to 600 mg per 24 hours) in the 
urine. There is an associated excessive 
urinary excretion of oxalate, which 
leads to the sole clinical manifestation 
of the disease, calcium oxalate nephro- 
lithiasis. In contrast to primary hyper- 
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A. BIGNAMI as a possible explanation for the as- 
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(NADH), hydroxypyruvate (2.5 X 10-4 
to 2 X 10-3M) markedly stimulated the 
conversion of glyoxylate to oxalate and 
decreased the reduction of glyoxylate to 
glycolate (Fig. 3). This effect was ob- 
served equally with preparations of 
lactate dehydrogenase from beef heart 
and rabbit muscle. Pyruvate in com- 
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Fig. 2. Effect of various concentrations of 
hydroxypy uvate on synthesis of oxalate 
from glyoxylate in human erythrocyte- 
hemolyzate system. Reaction mixture con- 
tained 1.5 ,umole of sodium [l-4C]glyoxy- 
late (254,000 count/min per micromole), 
100 /umole of phosphate buffer (pH 7.4), 
and erythrocyte hemolyzate containing 20 
mg of hemoglobin in a final volume of 1.0 
ml. Mixture was incubated for 30 minutes 
at 37?C; reaction was stopped with addi- 
tion of 0.1 ml of 1M citric acid, and de- 
carboxylation of formed ["C]oxalate was 
carried out by addition of purified fungal 
oxalate decarboxylase (3) with trapping of 
1CO2 in Hyamine for liquid scintillation 
counting. 
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Fig. 3. Effect of various concentrations of 
hydroxypyruvate on synthesis of oxalate 
and glycolate from glyoxylate catalyzed by 
lactic dehydrogenase. Reaction mixture 
contained 0.75 ,mole of sodium [l-'C] gly- 
oxylate (254,000 count/min per micro- 
mole), 100 ,umole of phosphate buffer 
(pH 7.4), 0.5 /umole of NADH, 5 tzg of 
beef heart lactate dehydrogenase type III 
(Sigma) in a final volume of 1.0 ml. The 
mixture was incubated for 30 minutes at 
37?C. Oxalate was determined as de- 
scribed in Fig. 2. Glycolate synthesis was 
determined by addition of 20 /Lmole of 
carrier glycolate at the end of the incuba- 
tion period followed by ion-exchange chro- 
matography on Dowex-l-acetate, paper 
chromatography, and determination of ra- 
dioactive glycolate with 2,7-dihydroxy- 
naphthalene and liquid scintillation count- 
ing (4). O, Oxalate synthesis; A, glycolate 
synthesis. 
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parable concentrations also stimulated 
oxalate synthesis but p-hydroxyphenyl- 
pyruvate had no effect. At concentra- 
tions of hydroxypyruvate greater than 
5 X 10-3M a decrease in the stimula- 
tion of oxalate synthesis was observed. 

These data indicate that hydroxy- 
pyruvate is capable of stimulating the 
oxidation of glyoxylate to oxalate in a 
coupled reaction catalyzed by lactate de- 
hydrogenase (LDH) in the presence of 
NADH, as reported for pyruvate (6). 
These observations offer an explanation 
for the increased synthesis and excre- 
tion of oxalate in L-glyceric aciduria, in 
which the defect in D-glyceric dehy- 
drogenase presumably leads to the in- 
tracellular accumulation of hydroxy- 
pyruvate (Fig. 1). This effect of 

hydroxypyruvate apparently results 
from the increased oxidation of the 
LDH-NADH complex secondary to the 
reduction of hydroxypyruvate to L- 
glycerate. This shift in the ratio NAD: 
NADH may also explain the concom- 
itant reduction in glycolate synthesis 
from [14C]glyoxylate observed in these 
patients (1). The decrease in the stimu- 
lation of oxalate synthesis at higher 
concentrations of hydroxypyruvate may 
be related to competition of hydroxy- 
pyuvate with glyoxylate for catalytic 
binding sites on the enzyme. 

This explanation for the increased 
oxalate synthesis found in L-glyceric 
aciduria represents a novel mechanism 
for the phenotypic expression of a hu- 
man genetic disease. The recent descrip- 
tion of a patient with chronic lactic 
acidosis associated with an altered re- 
duction-oxidation state of several 
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NAD:NADH-coupled reactions sug- 
gests a somewhat analogous but more 
generalized metabolic derangement, al- 
though no specific enzymatic defect was 
found (7). It can also be anticipated 
that the accumulation of other keto 
acids which are substrates for lactate 
dehydrogenase might secondarily re- 
sult in hyperoxaluria and hypoglycolic 
aciduria. Such an additional patient has 
been found and this explanation is being 
pursued (8). Finally, this further em- 

phasis of the important role of lactate 
dehydrogenase in oxalate synthesis in 
man suggests a possible site for the 

development of metabolic inhibitors. 
An effective inhibitor of oxalate syn- 
thesis would allow a rational approach 
to the treatment of primary hyper- 
oxaluria, a serious and often fatal group 
of diseases. 
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antibody-synthesizing and secreting cells 
has been established by identification 
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Selective Stimulation of Allelic Expression: Selective Stimulation of Allelic Expression: 
Effect of Antibodies to Allotypic Markers on Lymphoid Cells 

Abstract. Peripheral blood leukocytes from rabbits which were heterozygous 
(b5/b9) for markers on their immunoglobulin light chains were maintained in vitro 
for up to 24 hours in the presence or absence of antibody to b9. After culture 
-they were transferred into lethally irradiated b4/b' hosts. Recipients of cells ex- 
posed to antibodies to allotype markers showed a striking increase in concentration 
of circulating b9 molecules and number of b9 p!asma cells in their spleens com- 
pared to control animals receiving untreated cells from the same donor. There 
was no appreciable difference between the two groups of recipients with respect 
to their content of b5 molecules and immunocytes. 
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