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sheep. It has been experimentally trans- 
mitted by injection to sheep (1), goats 
(2), and, more recently, to small labora- 
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periods. Vacuolation of neurons is a 
characteristic of the disease (4). In the 
present study, five sheep affected with 
scrapie and seven normal sheep were 
satisfactorily perfused with glutaralde- 
hyde for electron microscopy. 
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present study, five sheep affected with 
scrapie and seven normal sheep were 
satisfactorily perfused with glutaralde- 
hyde for electron microscopy. 

Large membrane-bound vacuoles were 
found within neuronal cell bodies, den- 
drites, and axonal terminals in the me- 
dulla, pons, cerebellar cortex, supraop- 
tic nucleus of the hypothalamus, para- 
mammillary nucleus, and pyramidal 
layer of the hippocampus. Vacuolation 
of glial cells was not observed. Small 
invaginations indicative of pinocytosis 
were found along the vacuolar mem- 
brane, which suggests that it possessed 
some of the features of a plasma mem- 
brane. 

The most striking feature was that 
of vesicles 100 to 150 nm in diameter, 
and of multiple cytoplasmic projections 
budding inside the vacuole (Fig. 1). In 
some vacuolated neurons these projec- 
tions contained membrane-bound accu- 
mulations of round particles of uniform 
size, 35 nm in diameter (Fig. 2). Some 
of the particles displayed a dense cen- 
tral core. Others had an electron-lucent 
center (Fig. 2, inset). Particles of simi- 
lar size have been observed in large 
amounts within the distended neuronal 
cell processes of the cerebral cortex of 
mice injected with experimental scrapie 
material (5). These particles lay free in 
the cytoplasm and had electron-lucent 
centers. They were not thought to repre- 
sent the scrapie agent (5), mainly be- 
cause of the discrepancy between the 
size of the particles and the size of the 
scrapie infectious agent as determined 
by radiation experiments. The scrapie 
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Fig. I (above). Intravacuolar budding of 
vesicles and of cytoplasmic processes in a 
pontine neuron (X 31,000). 

Fig. 2 (right). Membrane-bound collec- 
tions of 35-nm particles within a vacuolat- 
ed neuron (n) in the supraoptic nucleus of 
the hypothalamus. These collections are contained in cytoplasmic processes extending inside the vacuole (v) (X 21,000). (Inset) An 
electron dense core is recognizable in some of the particles (X 53,000). 
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Aggregations of 35-Nanometer Particles Associated with 

Neuronal Cytopathic Changes in Natural Scrapie 

Abstract. Neuronal vacuolation and intravacuolar budding of vesicles and cyto- 
plasmic processes appear to be the most characteristic cellular lesion in natural 
scrapie, a chronic degenerative disease of the central nervous system of sheep 
which is transmissible by injection. Membrane-bound accumulations of the 35-nm 
particles are found in the cytoplasmic processes that project inside the vacuoles 
of the neuronal perikaryon. Such particles are present only in a small number of 
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agent is inactivated only by a very large 
amount of ionizing radiation, which 

suggests a small target size and a molec- 
ular weight as low as 105 (6). 

In apparent contrast with these data, 
filtration studies indicate that the size 
of the scrapie agent is 20 to 40 nm 
(7), thus well within the range of the 
particles described in this report and 
in experimental scrapie. 

It has been proposed that an abnor- 
mality in the replication of cell mem- 
branes might be responsible for scrapie 
(8). Our finding of multiple cytoplasmic 
projections and vesicles budding inside 
neuronal vacuoles is compatible with 
this hypothesis. The discrepancy be- 
tween the size of the particles observed 
in natural and experimental scrapie and 
the radiation data on the probable size 
of the transmissible agent could possi- 
bly be explained by postulating that 

incomplete viral particles have the ca- 

pacity to produce abnormalities in the 

replication of neuronal cell membranes 
of the kind described in this report. 

In sheep, particles were found solely 
within the neuronal lesions which are 
characteristic of natural scrapie and 
have not been reported in other neuro- 

pathological conditions. It should be 
added, however, that only a small mi- 
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Hyperoxaluria in L-Glyceric Aciduria: Possible 

Pathogenic Mechanism 

Abstract. The effect of hydroxypyruvate on synthesis of oxalate at 

from glyoxylate was studied in in vitro preparations from normal hun 

cytes and leukocytes, rat liver, and with purified lactate dehydrog 
beef heart. In the presence of reduced nicotinamide adenine dinucleotic 

pyruvate stimulated the oxidation of glyoxylate to oxalate and de 
reduction of glyoxylate to glycolate. These findings may explain the hy 
seen in L-glyceric aciduria (type II primary hyperoxaluria). 
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L-Glyceric aciduria (primary hyper- 
oxaluria, type II) is a metabolic disease 
secondary to a genetic defect in D-gly- 
eerie dehydrogenase, an enzyme which 
catalyzes the reduction of hydroxypyru- 
vate to D-glycerate in the degradative 
pathway of serine metabolism (Fig. 1) 
(1). It is presumed that hydroxypyru- 
vate accumulates and is reduced by 
lactate dehydyrogenase to L-glycerate, 
which is excreted in large amounts 
(300 to 600 mg per 24 hours) in the 
urine. There is an associated excessive 
urinary excretion of oxalate, which 
leads to the sole clinical manifestation 
of the disease, calcium oxalate nephro- 
lithiasis. In contrast to primary hyper- 
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abranes with was undertaken to examine the effect 
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A. BIGNAMI as a possible explanation for the as- 
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