
ply intense intraspecific producer com- 
petition and also a relatively low tend- 
ency for exploiters to become hungry or 
satiated and to modify their behavior 
accordingly. In such a system there is 
no tendency for extinction regardless of 
productivity. 

However, if (a+ g) is less than 1, 
there is a positive V* and 

OR aQ(l - g) (V*)a- 
V* 

- 
l(1 -g a - g) 

Clearly Eq. 3c is always positive if V* 
is biologically real. Hence, in model 3, 
if there is any threat of system extinc- 
tion, it is increased by enrichment. 

Models 1 and 6 are similar and most 
complex. It turns out that Eq. 6b is 
satisfied by two values of V. One is V*. 
Another is a very small value of V 
that occurs over a trough in the V iso- 
cline. Thus, there is ambiguity in the 
following: 

a In K 
V* - 

(e?v - 1) (e' - 1 - cV* - csV2) 
(e v'_ - cV* - 1)2 

This equation, set to zero, holds for 
both V* and the V under the trough. 
The unstable equilibrium values of V 
are those between V (trough) and V*. 
Model 6c is positive for V* and nega- 
tive for V (trough) (9). Hence, as en- 
richment proceeds, the range of unstable 
V is increasing at both ends. Therefore 
again, enrichment unambiguously tends 
to weaken the steady state. Model 1 has 
the same characteristics (9). 

Until we are confident that the con- 
clusions based on these systems do not 
apply to natural ecosystems, we must 
remain aware of the danger in setting 
enrichment as a human goal. 
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Acetaldehyde, a pharmacologically 
active metabolite of ethanol, appears to 
contribute to the actions of ingested 
ethanol (1). Acetaldehyde can induce 
nausea, vomiting, and sweating; it 
causes release of catecholamines and 
depression of oxidative phosphorylation 
in isolated brain tissue. Recently it was 
shown that acetaldehyde condenses with 
catecholamines (2) or potentiates a 
similar condensation by certain endog- 
enous aldehydes (3) to form isoquino- 
line alkaloids that may possess biologic 
activity. Because the pharmacologic ef- 
fects of acetaldehyde are generally sub- 
jectively unpleasant, it has even been 
suggested that "while ethanol actions 
may be the reason that people drink 
alcohol, the actions of acetaldehyde 
may be more related to why they stop" 
(1). 

The purpose of our study was to see 
if phenobarbital, an inducer of many 
liver enzymes (4), would increase the 
levels of acetaldehyde dehydrogenase 
(AcDH), which is believed to be the 
enzyme primarily responsible for detox- 
ication of acetaldehyde. We were in- 
terested in the tolerance to the effects 
of ingested alcoholic beverages exhib- 
ited by persons who use barbiturates 
regularly. If AcDH activity were ele- 
vated after exposure to barbiturates, 
the consequent more rapid removal of 
acetaldehyde could contribute to etha- 
nol tolerance. Our results with mice 
support this hypothesis. 

Male and female Paris R-III or C- 
57BL mice were injected intraperito- 
neally twice a day (at approximately 
9:30 a.m. and 4:30 p.m.) for 4 days 
with either isotonic saline (buffered at 
pH 7.4 with 0.01M sodium phosphate) 
or with sodium phenobarbital (75 mg/ 
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kg) or with ethanol (2.4 g/kg, admin- 
istered as a 30 percent by volume solu- 
tion), each dissolved in the isotonic 
buffer. On day 5, the animals were 
killed by cervical dislocation, and the 
liver was homogenized (ten strokes in 
a Teflon and glass homogenizer) in 20 
volumes of ice-cold water. The homog- 
enate was kept at about 0?C for the 
duration of the experiment. Cell debris 
was removed by centrifugation at 
700g for 5 minutes. Enzyme assays 
were completed within 2 hours after 
death. 

Acetaldehyde dehydrogenase was as- 
sayed at room temperature by a modifi- 
cation of the method of Maxwell and 
Topper (5). Assay tubes contained 6 ml 
of buffer (0.1M glycine at pH 9.5, 
containing 4.0 mM mercaptoethanol 
and 2.0 mM ethylenediaminetetraacetic 
acid), 0.4 ml of nicotinamide adenine 
dinucleotide ,(NAD) solution (Calbio- 
chem, 10 mg/ml), and 0.1 ml of acet- 
aldehyde solution (Eastman, 1 percent 
by volume in water). A blank contain- 
ing all of the above except acetaldehyde 
was used. The reaction was started by 
the addition of 0.2 ml of liver extract. 
Reduced NAD (NADH) concentration 
was measured by the optical density at 
340 nm in a Gilford model 300 spectro- 
photometer after 3.5 and at 7.5 min- 
utes; enzyme activity was given by the 
increase in optical density during the 
4-minute interval, with the blank sub- 
stracted. 

In three separate experiments, in- 
creases in liver AcDH activity were 
observed after 4 days of treatment with 
phenobarbital, but AcDH activity was 
not increased after treatment with 
ethanol. Pooled results of the three 
experiments (Fig. 1) indicate that 
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AcDH activity was doubled (P < .001) 
after phenobarbital treatment. In order 
to express the enzyme activity in terms 
of its potential action in the whole 
animal, data were calculated as total 
liver AcDH activity (measured by the 
NADH increase) divided by the body 
weight. When the results were ex- 
pressed as NADH increase per gram of 
liver, a 60 percent increment in AcDH 
activity (P < .001) was evident; thus 
the apparent increase in AcDH activity 
was not due to changes in liver size or 
body weight. 

We were concerned about the diffi- 
culty in obtaining absolute estimates 
of AcDH activity because alcohol de- 
hydrogenase in liver homogenates can 
remove NADH by catalyzing the reduc- 
tion of acetaldehyde. Apparent changes 
in AcDH activity between experimental 
groups might reflect changes in alcohol 
dehydrogenase activity. We verified our 
result in several ways. 

Separate analyses of alcohol dehy- 
drogenase, performed with a modifica- 
tion of the method of Rodgers et al. 
(6), showed no significant difference 
between control animals (average, 
0.108 optical density unit) and pheno- 
barbital-treated animals (average, 0.104 
optical density unit). This indicated 
that the apparent increase in AcDH 
activity was not due to a decrease in 
alcohol dehydrogenase activity. An- 
other experiment was performed with 
a group of 18 female mice of both 
species. The mice were equally divided 
between control and phenobarbital- 
treated groups, and their livers were 
assayed for enzyme activity. However, 
the reaction mixture for the enzyme 
assay in this experiment also contained 
1 mM pyrazole (Eastman), an inhib- 
itor of alcohol dehydrogenase (7, 8). 
Results confirmed the original observa- 
tions; the observed AcDH activity levels 
were increased 140 percent after phe- 
nobarbital treatment (P < .001). 

The potential contribution of NADH 
oxidase activity was evaluated sepa- 
rately. When acetaldehyde was omitted 
from the reaction system and a small 
amount of NADH (about 0.1 optical 
density unit) was added, little or no 
loss in NADH was observed; the 
amount of NADH added was in the 
range of the upper limit of NADH 
generation during the AcDH assay. 
When both acetaldehyde and NAD 
were omitted and larger amounts of 
NADH (about 0.8 optical density unit) 
were added, loss in NADH was ob- 
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periods. Vacuolation of neurons is a 
characteristic of the disease (4). In the 
present study, five sheep affected with 
scrapie and seven normal sheep were 
satisfactorily perfused with glutaralde- 
hyde for electron microscopy. 

periods. Vacuolation of neurons is a 
characteristic of the disease (4). In the 
present study, five sheep affected with 
scrapie and seven normal sheep were 
satisfactorily perfused with glutaralde- 
hyde for electron microscopy. 

Large membrane-bound vacuoles were 
found within neuronal cell bodies, den- 
drites, and axonal terminals in the me- 
dulla, pons, cerebellar cortex, supraop- 
tic nucleus of the hypothalamus, para- 
mammillary nucleus, and pyramidal 
layer of the hippocampus. Vacuolation 
of glial cells was not observed. Small 
invaginations indicative of pinocytosis 
were found along the vacuolar mem- 
brane, which suggests that it possessed 
some of the features of a plasma mem- 
brane. 

The most striking feature was that 
of vesicles 100 to 150 nm in diameter, 
and of multiple cytoplasmic projections 
budding inside the vacuole (Fig. 1). In 
some vacuolated neurons these projec- 
tions contained membrane-bound accu- 
mulations of round particles of uniform 
size, 35 nm in diameter (Fig. 2). Some 
of the particles displayed a dense cen- 
tral core. Others had an electron-lucent 
center (Fig. 2, inset). Particles of simi- 
lar size have been observed in large 
amounts within the distended neuronal 
cell processes of the cerebral cortex of 
mice injected with experimental scrapie 
material (5). These particles lay free in 
the cytoplasm and had electron-lucent 
centers. They were not thought to repre- 
sent the scrapie agent (5), mainly be- 
cause of the discrepancy between the 
size of the particles and the size of the 
scrapie infectious agent as determined 
by radiation experiments. The scrapie 
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Fig. I (above). Intravacuolar budding of 
vesicles and of cytoplasmic processes in a 
pontine neuron (X 31,000). 

Fig. 2 (right). Membrane-bound collec- 
tions of 35-nm particles within a vacuolat- 
ed neuron (n) in the supraoptic nucleus of 
the hypothalamus. These collections are contained in cytoplasmic processes extending inside the vacuole (v) (X 21,000). (Inset) An 
electron dense core is recognizable in some of the particles (X 53,000). 
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Aggregations of 35-Nanometer Particles Associated with 

Neuronal Cytopathic Changes in Natural Scrapie 

Abstract. Neuronal vacuolation and intravacuolar budding of vesicles and cyto- 
plasmic processes appear to be the most characteristic cellular lesion in natural 
scrapie, a chronic degenerative disease of the central nervous system of sheep 
which is transmissible by injection. Membrane-bound accumulations of the 35-nm 
particles are found in the cytoplasmic processes that project inside the vacuoles 
of the neuronal perikaryon. Such particles are present only in a small number of 
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