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cycle of immunocytes may be visualized 
expressed by morphological sequences. 

A long-term culture of human lym- 
phoid cells derived from a patient with 
lymphoma was established in 1966 (1). 
These cells now have been maintained 
in monolayer cultures for 5 years. Retic- 
uloid fusiform cells and lymphocytoid 
and plasmacytoid round cells are pre- 
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Fig 1. TL cells in culture exhibiting the en- 
tire gamut of morphological configura- 
tions (Wright's stain; X 480). 
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as a series of functional compartments 

dominant. Binucleate cells and transi- 
tional forms are a frequent finding (Fig. 
1). Indirect immunofluorescent studies 
have demonstrated that these cells syn- 
thesize gamma globulin. Cells growing 
on Leighton cover slips were rinsed in 
saline and fixed in acetone for 10 min- 
utes. The cells were incubated with un- 
labeled goat antiserum to human gam- 
ma globulin for 30 minutes at room 
temperature. The cells were then 
washed twice with a buffer solution 
(pH 7.2) and incubated for 30 minutes 
with fluorescein tagged rabbit antise- 
rum to goat gamma globulin. The cells, 
without counterstaining, were examined 
under an ultraviolet microscope. Posi- 
tive apple-green fluorescence was easily 
distinguishable from autofluorescence. 

Time-lapse photographic studies were 
performed with a culture system (2). 
Because of the prolonged doubling time 
of these cells (52 ? 2 hours), one pic- 

as a series of functional compartments 

dominant. Binucleate cells and transi- 
tional forms are a frequent finding (Fig. 
1). Indirect immunofluorescent studies 
have demonstrated that these cells syn- 
thesize gamma globulin. Cells growing 
on Leighton cover slips were rinsed in 
saline and fixed in acetone for 10 min- 
utes. The cells were incubated with un- 
labeled goat antiserum to human gam- 
ma globulin for 30 minutes at room 
temperature. The cells were then 
washed twice with a buffer solution 
(pH 7.2) and incubated for 30 minutes 
with fluorescein tagged rabbit antise- 
rum to goat gamma globulin. The cells, 
without counterstaining, were examined 
under an ultraviolet microscope. Posi- 
tive apple-green fluorescence was easily 
distinguishable from autofluorescence. 

Time-lapse photographic studies were 
performed with a culture system (2). 
Because of the prolonged doubling time 
of these cells (52 ? 2 hours), one pic- 

ture was taken every 30 minutes for 
165 hours. Cell pedigrees were gener- 
ated from enlargements of the nega- 
tives for morphologic analysis. Gener- 
ation times were measured from one 
cell division to the next daughter-cell 
division. The median generation time 
was 36 hours. 

Rare cells, still metabolically active 
as evidenced by mobility and changes 
in shape, failed to divide during the ex- 
periment. Most of the cells undergo 
changes in shape, from round to fusi- 
form and often back to round. Each of 
these changes lasts for several hours 
which allows for morphologic defini- 
tion. When spindle-shaped cells, be- 
come round prior to mitosis, they do 
so very rapidly within a single half- 
hour interval. Upon division, a fusi- 
form cell can give rise to one elongated 
and one round daughter cell (Fig. 2) or 
more commonly, to two fusiform cells. 
Round cells may also give rise to a mor- 
phologically mixed population; some- 
times they produce only smaller round 
cells. Apparently these smaller round 
cells are terminal because, after a brief 
period of rapid movement, they become 
immobile and never divide. Occasion- 
ally a cell that remained round for 
numerous hours will adopt a fusiform 
shape for a few hours and then start 
to divide vigorously. 

An unusual finding is that two 
daughter cells may come into close 
contact and fuse, and a single binu- 
cleated cell will emerge (Fig. 3). After 
several hours this cell may either dis- 
sociate into a rapidly mobile round cell 
and a static spindle-shaped form, or it 
will divide giving four round daughter 
cells. 

This fusion of cells is different from 
the mechanisms of emperipolesis (3), 
peripolesis (4), and uropodapsis (5) be- 
cause the fusion is long-lived, distin- 
guishable cell boundaries disappear, 
and the process may sometimes con- 

Table 1. All of the cells in the examined fields 
were arbitrarily assigned to a morphological 
category according to the prevalent feature 
and classified as fluorescent or nonfluorescent. 
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Morphological distribution 

Cell Fluores- Nonfluo. Fluo- 
types cent rescent 

cells cells c( e 

Round 183 45 80.5 
Intermediate 

forms 114 93 65.5 
Fusiform 32 265 10.7 
Total 329 403 44.6 
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127 Hr 134 Hr 

136 Hr. 145 Hr 160 Hr 

Fig. 2. Time-lapse sequence of morphological transformations undergone by 
cell. There are variations in intermitotic times (X 600). 

65 Hr 

b tHr 

Fig. 3. Film sequence showing the fusion of two daughter cells into a single bii 
cell (X 600). 
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tinue to the formation of a multinu- 
cleated cell. Cell fusion has been pro- 
posed as the mechanism by which lym- 
phoma cells can escape the policing 
action of immune defense mechanisms 
(6). 

The morphological changes also have 
71 Hr a functional counterpart. Staining with 

.... i. methyl green pyronine demonstrates 
marked pyroninophilia of the round 
cells and only traces in the spindloid 
forms. When exposed to fluorescein- 
labeled antiserum to human gamma 
globulin, the round cells show intense 
fluorescence, whereas only minute 

100 Hr quantities, if any, of fluorescent ma- 
terial can be detected in the fusiform 
cells (Table 1). This indicates that the 
cells can only synthesize immunoglobu- 
lins when they adopt a round form. 
However, occasionally a large fusiform 
cell, sometimes multinucleated but 
more often binucleated, shows strong 

135 Hr fluorescence as well as intense pyronin 
staining properties. Cells with similar 
shape, also capable of antibody syn- 
thesis, have been described as lying 
amid round cells derived from explants 
of lymph nodes (7). Our data indicate 
that cultured human immunoglobulin- 
producing cells undergo "cyclic" 

162 Hr. changes in shape which are the mor- 
phological expression of functional 

a s e 
compartmentalization. Therefore, all of 
the different morphological forms en- 
countered in vivo could be considered 
as passing events in the life cycle of 
immunocytes instead of fixed and non- 
transient classes of cells. 
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