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Extraretinal Light Perception: Entrainment of the Biological 
Clock Controlling Lizard Locomotor Activity 

Abstract. The circadian activity rhythm of the iguanid lizard Sceloporus 
olivaceus can be entrained by light cycles whether or not the animals have eyes. 
Removal of the pineal organ and parietal eye in blinded lizards does not pre- 
vent entrainment. Our data demonstrate the existence of an extraretinal photo- 
receptor which can mediate entrainment of a biological clock in reptiles. 
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Fig. 1. Entrainment of a lizard after removal of the lateral eyes. The initial lighting 
regimen is diagramed at the top of the record [solid black, darkness; white, white 
light (30 lux)]. The lizard was blinded on the 16th day of the record. Eleven days 
days later the light cycle was delayed by 6 hours. Note entrainment to the new light 
cycle after several days of transients. Hour zero is at midnight Central Standard Time. 
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several investigators have demonstrated 
that the photoreceptors involved in 
mediating entrainment of activity 
rhythms in at least two classes of 
vertebrates are, in part, extraretinal. 
The perching activity of the house 
sparrow Passer domesticus can be en- 
trained via extraretinal receptors lo- 
cated in the brain (1). The locomotor 
rhythms of both the slimy salamander 
Plethodon glutinosus and the green 
frog Rana clamitans can be entrained 
by light cycles after the removal of the 
eyes (2). Extraretinal receptors also 
participate in time-compensated celestial 
orientation of the southern cricket 
frog Acris gryllus .and thus by in- 
ference in the entrainment of its bio- 
logical clock (3). Data are presented 
here which show that the activity 
rhythms of a third class of vertebrates, 
the reptiles, can be entrained by light 
cycles in the absence of all known pho- 
toreceptive structures. 

The activity rhythm of the iguanid 
lizard Sceloporus olivaceus is entrained 
by a cycle of 12 hours of fluorescent 
light (30 lux) and 12 hours of dark 
(LD 12:12) after complete surgical 
removal of both eyes (Fig. 1) (4). All 
blind lizards which gave measurable 
amounts of activity (17 cases) clearly 
entrained to this stimulus. 

In addition to their eyes, many lizards 
possess two organs embryologically de- 
rived from the roof of the di- 
encephalon, which, on the basis of 
ultrastructural and electrophysiological 
evidence, are thought to be photore- 
ceptive-the parietal eye and the pineal 
organ (5, 6). Among the lizards these 
two organs are diverse in morphology 
and location. Some lizards do not possess 
a parietal eye at all. Electron micros- 
copy has shown that the pineal organ 
(or epiphysis proper) often contains 
cells with modified photoreceptive ultra- 
structure (5). The parietal eye contains 
well-organized photoreceptors which re- 
semble the cones of the lateral eye (5- 
7). Electrophysiological responses to 
illumination have been recorded from 
the parietal eye of several lizard species, 
including members of the iguanids, 
and from the pineal organ of lacertid 
and iguanid lizards after removal of 
the parietal eye (8). 

In spite of the strong evidence for a 

photoreceptive function of both the 
parietal eye and the pineal organ in 
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in any of the S. olivaceus tested (Fig. 
2) (9). Nine lizards survived blinding 
and removal of the parietal eye and 
pineal organ and in addition gave ac- 
tivity records which were adequate to 
assay entrainment. All of these en- 
trained to the light cycle subsequent to 
the surgery. Two other blind lizards 
entrained after removal of the parietal 
eye but died before pinealectomy. Rec- 
ords of several lizards showed activity 
too sparse for interpretation, but in no 
case did a lizard with an interpretable 
record fail to entrain after any of the 
surgical procedures described. Although 
all fluorescent bulbs were surrounded 
by water jackets (4), a control experi- 
ment was performed which eliminated 
the possibility that the blind lizards 
were entrained by a temperature cycle 
rather than by the light cycle (Fig. 3). 

Lizards were also tested for their 
ability to entrain to a dim green light 
source of approximately 0.1 lux (Syl- 
vania Panelescent Nite-Lite). Of nine 
lizards with eyes intact, three entrained 
to this stimulus. Two of the six that 
failed to entrain showed relative co- 
ordination to the light cycle (10). The 
rest free-ran through the light cycle 
(expressed their endogenous circadian 
rhythms in its presence). These data 
indicate that 0.1 lux of green light is 
near the threshold for entrainment of 
normal lizards. Those lizards which 
entrained to the dim light cycle began 
free-running immediately after removal 
of their eyes (Fig. 4), which suggests 
that the eyes are somehow involved 
in the entrainment process in intact 
lizards. However, the relative roles of 
the eyes and the extraretinal receptor 
or receptors in entrainment are un- 
known. 

In other vertebrate classes the ana- 
tomical site or sites of the extraretinal 
receptors involved in entrainment are, 
for the most part, not known. There 
is evidence that evaginations of the roof 
of the diencephalon in members of 
the other lower vertebrate classes [fish 
(including cyclostomes) and amphib- 
ians (5, 6, 11)] can probably function 
as photoreceptors, but in only one 
case is there direct evidence that they 
are involved in entrainment. Adler has 
demonstrated that removal of the 
frontal organ [which is considered by 
some to be homologous to the parietal 
eye of lizards (6)1 of blinded green 
frogs will cause them to free-run in the 
presence of a light cycle (2). In house 

sparrows the extraretinal receptor or 

receptors responsible for entrainment 
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is located in the brain. The pineal organ 
is probably not involved and is certain- 

ly not the only extraretinal photore- 
ceptor (1). In adult mammals there 
is no evidence that extraretinal receptors 
are involved in entrainment. Blind 
adult rats and mice will not entrain 
to light cycles (12). In juvenile rats, 
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however, an extraretinal photoreceptor 
has been implicated in the control of 
the circadian rhythm of the amount of 
serotonin in the pineal organ (13, 14). 
Removal of the Harderian gland, a 

gland found within the orbit of many 
vertebrates, abolishes the effect of light 
on the amount of serotonin in the pineal 
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Fig. 2. Entrainment of a lizard after removal of the lateral eyes, parietal eye, and pineal 
organ. The blind lizard was initially entrained to the light cycle diagrammed at the top 
of the record. After removal of the parietal eye (Parx.) the lizard entrained to a new 
light cycle, the onset of which was advanced 5.5 hours from the onset of the initial 
light cycle. The pineal organ was then removed (Pinx.), and the light cycle was de- 
layed 4.8 hours. The lizard was finally put under continuous dim green light (LL, 0.1 
lux) in which it free-ran with a period of 22.8 hours. 
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Fig. 3. A control experiment performed to eliminate the possibility of entrainment by 
low-amplitude temperature cycles. The lizard was blinded and the pineal organ and 
parietal eye were removed before the beginning of the record. Note that the lizard 
entrains to the light cycles when they are present. On the day marked Bulb Taped, a 
fluorescent bulb which had been painted black and covered with black tape over its 
entire surface was substituted for the normal bulb in the water jacket. The taped bulb 
was on the same "light" cycle as the previous bulb. This procedure eliminates the light 
cycle but preserves any low-amplitude temperature cycle which may be present. The 
lizard free-runs when exposed to the taped bulb, showing that the light cycle is the 
true entraining agent. 

,O HOURS 24. 

' --, 
-- 

I t 
- 

p 1 _ ,_ 
? 

0a ! ,,u 

"~~~~~n ~~~? ! = ~ sl_l?L -m! ,~Y91 , , ,LY 
, t m. . . 

- ~ ~~~~~~~~~ ~ ~~~~~~~~~ r - . 1t S L1 [ 

~~~- I-1BL_ C1L1-u ul I--L 
_~ ~ ~~ ----~R~~I??au r? 'IIU 

IILI-~ -E ine 
w1~tCl- L 1 _ v ~ ~ 1 1 LUWlal)mIUI I .~ 

---l~? C~_--~ B Iide a u _ 
.a~~~ ~~~~ .------r 

. 

Fig. 4. Contribution of the lateral eyes to perception of an entraining light cycle. The 
normal (unoperated) lizard was entrained to a light cycle in which the light (indicated 
by stippling in the diagram) was approximately 0.1 lux (green light). After removal 
of the lateral eyes the lizard free-ran through the light cycle with a circadian period 
of about 23 hours. 
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glands of blinded suckling rats. Wetter- 
berg et al. suggest that this gland may 
be an extraretinal photoreceptor (14). 
The fact that removal of the Harderian 
glands did not prevent entrainment to 
fluorescent light cycles by several 
blinded S. olivaceus with pineal organ 
and parietal eye removed suggests that 
this gland is probably not involved in 
entrainment of the lizard activity 
rhythm. 

Our data show that both the eyes 
and an extraretinal receptor, other than 
the pineal organ or parietal eye, are 
involved in the entrainment of lizards. 
In the light of other recent findings 
these data add strength to the hypoth- 
esis that all vertebrates may rely on cues 
perceived extraretinally to regulate bio- 
logical clocks as well as certain other 
physiological responses (15). 

HERBERT UNDERWOOD 

MICHAEL MENAKER 

Department of Zoology, 
University of Texas at Austin, 
Austin 78712 
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Regrowth of cut motor nerves in 
some lower vertebrates restores full co- 
ordinated movement to the reinner- 
vated muscles (1). When the superior 
oblique muscle of the carp eye is in- 
nervated first by the nerve to the antag- 
onist muscle and then superinnervated 
by the correct nerve, contractions 
caused by the antagonist innervation 
cease as soon as the response to the 
original nerve appears. Foreign nerves 
of proven ability stop working when 
the original nerve grows back. No 
ultrastructural signs of degeneration of 
neuromuscular junctions accompanies 
the repression of the first innervation. 
Either foreign motoneurons no longer 
bring impulses to the muscle or neuro- 
muscular transmission is blocked (2). 
We have distinguished between these 
two possibilities by the following ex- 

periments. 
In two carp the IIIrd and IVth 

nerves to one eye were cut where they 
run together in the cranium. The eye 
was paralyzed except for flick move- 
ments from the posterior rectus muscle 
which is innervated by the VIth nerve. 
Nineteen days later other movements 
began to return, weakly at first but ap- 

9 OCTOBER 1970 

Regrowth of cut motor nerves in 
some lower vertebrates restores full co- 
ordinated movement to the reinner- 
vated muscles (1). When the superior 
oblique muscle of the carp eye is in- 
nervated first by the nerve to the antag- 
onist muscle and then superinnervated 
by the correct nerve, contractions 
caused by the antagonist innervation 
cease as soon as the response to the 
original nerve appears. Foreign nerves 
of proven ability stop working when 
the original nerve grows back. No 
ultrastructural signs of degeneration of 
neuromuscular junctions accompanies 
the repression of the first innervation. 
Either foreign motoneurons no longer 
bring impulses to the muscle or neuro- 
muscular transmission is blocked (2). 
We have distinguished between these 
two possibilities by the following ex- 

periments. 
In two carp the IIIrd and IVth 

nerves to one eye were cut where they 
run together in the cranium. The eye 
was paralyzed except for flick move- 
ments from the posterior rectus muscle 
which is innervated by the VIth nerve. 
Nineteen days later other movements 
began to return, weakly at first but ap- 
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propriate in direction and timing as in- 
dicated by the conjugate behavior of 
the intact eye. After two more months 
movements of both eyes were coordi- 
nated and equal. Figure 1 shows the 
rotation of both eyes in response to tilt- 

ing the whole body up and down. The 
difference between the curves is no 

greater than normal (3). 
The fish were then anesthetized with 

MS 222 and paralyzed with gallamine. 
The eyes and extraocular muscles were 
removed, leaving the nerve stumps free. 
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The animals were mounted in an ap- 
paratus which could be tilted up or 
down and rotated to the left or right. 
An electrode was placed successively 
on the cut ends of the inferior oblique 
nerves of the normal and the reinner- 
vated sides. Figure 2 shows the re- 

sponses to tilting. Normally the inferior 
oblique neurons discharge when the 
head is down and stop firing if the 
head moves up. Neurons of the supe- 
rior oblique nerve discharge for move- 
ments in the opposite direction. On the 
reinnervated side there were fibers in 
the inferior oblique trunk which in- 
creased their discharge when the head 
was down and others which discharged 
when the head was up-reflex behavior 
which usually identifies motoneurons 
of the superior oblique. Other maneu- 
vers revealed the discharge patterns of 
motoneurons from the rectus muscles 
in the same nerve. 

Therefore, sprouting and regrowth 
of the IIIrd and IVth nerves must 
have been haphazard, and axons from 
different kinds of motoneurons must 
have entered channels which eventually 
led them out into the inferior oblique 
branch of the IIIrd nerve in the orbit. 
Two months later they were still there 
and they showed normal reflex re- 

sponses. Nevertheless, the movements 
of the eye produced by the inferior 

oblique muscle corresponded not to the 

totality of the impulses in the trunk 
but only to those delivered by fibers of 
the original inferior oblique nerve. 
Thus, when the head is held up, supe- 
rior oblique neurons should discharge 
to pull the eye around toward the hori- 
zontal while the inferior oblique moto- 
neurons should stop. The neurogram 
from the operated side (Fig. 2) shows 
a strong burst of superior oblique neu- 
rons in the inferior oblique nerve. If 
this burst had been transmitted to the 
muscle, coinnervation of the two 
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direction of s Fig. 1. Graph of the wheellike rotation 
direction of superior 

oblique musclre of the carp eye about the optic axes when 
20 oe the body of the fish is tilted up and down 

0 from the normal horizontal position. The 
O reflex movements, mainly of labyrinthine 

?10 0 origin, tend to keep the eye horizontal. 
1 0 Rotation when the head is up is almost 

entirely due to contraction of the supe- 
rior oblique muscle; rotation when the 

I . _I head is down is due to the inferior oblique 
20 40 muscle [see (5) for further details]. Left 

head up operated eye, filled circles; right control 
BODY POSITION eye, open circles. Measurements were 

made 2 months after reinnervation of the 
left eye muscles. Both eyes show normal 
reflex movements, and the difference be- 

direction of inferior tween them is no greater than that in nor- 
70 oblique muscle mal fish. Axes in degrees from horizontal. 
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Reinnervated Eye Muscles Do Not Respond to 

Impulses in Foreign Nerves 

Abstract. Normal movements return to carp eyes after section and regeneration 
of the Illrd and IVth nerve trunks. Two months after reinnervation, records of 
impulses in the inferior oblique nerve during tilting of the body show activity of 
the normal motoneurons to that muscle, together with discharge patterns charac- 
teristic of the antagonistic superior oblique and some of the rectus muscles. These 
axons must have found their way into the inferior oblique trunk during sprouting 
at the lesion and must be maintained after reinnervation. Impulses from foreign 
axons are without detectable effect on eye movement and therefore must be 
blocked at their termination in the muscle. Previous study of cross-innervated and 
doubly innervated fish eye muscles revealed only structurally normal neuromus- 
cular junctions. Transmission from foreign junctions in multiply innervated muscle 
is blocked by competitive molecular recognition and control mechanisms that do 
not cause degeneration. 
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