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equilibrium of the two postulated forms 

of mitoch ondrial GOT (the pyridoxal 
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Family studies were performed w ith 
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(Fig. 2). All three variants segregaom ste 
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Of the 860 place ntal preparations 
examined, variant I occurred with a 

frequency of 1.7 percent among Cau- 
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Thus, although variants of soluble 
GOT are extremely rare, there are at 
least three variants of mitochondrial 
GOT, all of which are common enough 
to be considered polymorphisms. The 
consistent triplet patterns support the 
hypothesis that both soluble and mito- 
chondrial GOT exist as dimers. The 
differing patterns of variant I in the 
two buffer systems and the failure to 
differentiate between variants I and III 
in the phosphate-citrate buffer system 
emphasize the importance of altering 
electrophoretic conditions in the study 
of isoenzymes. Segregation of the vari- 
ants according to simple Mendelian 
inheritance rather than maternal in- 
heritance, as was the case with a 
variant of human mitochondrial malate 
dehydrogenase (9), provides a second 
example of a human mitochondrial en- 
zyme that is under the control of nu- 
clear DNA. 
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spaced on the chromosome. 

Techniques developed for the visual- 
ization of the structure of active genes 
in a eukaryotic cell (1) were used to 
observe chromosomes of Escherichia 
coli. A mutant strain was utilized (2) 
which, under certain growth condi- 
tions, develops fragile cell walls. Frag- 
ile cells in the log phase of growth were 
osmotically burst by rapid dilution into 
water, then prepared for electron mi- 
croscopy (Fig. 1). 

At low magnification, the extruded 
contents of shocked cells appear as 
masses of thin fibers with attached 
strings of granules (200 to 250 A in 
diameter); these granules are approxi- 
mately the size of E. coli ribosomes 
(3). After osmotic rupture, treatment 
with deoxyribonuclease destroys the 
fibers, whereas ribonuclease removes the 
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granular strings from the fibers. From 
these results, we conclude that the fi- 
bers are bacterial chromosomes and 
the granules are ribosomes which were 
translating messenger RNA (mRNA) 
molecules at the time of isolation. The 
contents are not completely removed 
from the cells by osmotic shock, al- 
though considerable amounts are ex- 
truded and spread to varying degrees 
around the cells. Consequently, we 
have been able to observe only portions 
of chromosomes rather than complete 
genomes. 

The diameter of double-helix DNA 
is ~ 20 A (4). In our preparations, the 
E. coli chromosome is - 40 A in diam- 
eter. This suggests either that the DNA 
is combined with some nonhistone pro- 
teins in vivo (5) or that proteins at- 
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Visualization of Bacterial Genes in Action 
Abstract. The morphology of active structural and putative ribosomal RNA 

genes was observed by electron microscopy after lysis of fragile Escherichia coli 
cells. Conclusions drawn are: most of the chromosome is not genetically active 
at any one instant; translation is completely coupled with transcription; the 16S 
and 23S ribosomal RNA cistrons occur in tandem, in regions which are widely 
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tach rather uniformly to the DNA dur- 
ing or after isolation. 

The ribosomes are attached to the 
E. coli genome on mRNA molecules 
as monomers and in polyribosomes 
(Figs. 2 and 3). The longest poly- 
ribosome observed to date contained 
40 ribosomes. In biochemical studies 
of the fragile strain, Mangiarotti and 
Schlessinger (6) demonstrated that all 
or very nearly all mRNA molecules are 
in polyribosomes within the cell. Our 
micrographs demonstrate that free 
polyribosomes are rare in our prepara- 
tions, and these could possibly arise 
from shearing during cell rupture. 
Since our technique would allow the 
detection of significant numbers of nat- 
urally occurring free polyribosomes, we 
conclude that essentially all mRNA 
molecules are connected to the E. coli 
genome in vivo. This observation pro- 
vides visual confirmation of the early 
predictions by Stent and others (7) that 
transcription and translation are inti- 
mately coordinated in prokaryotic cells. 

Each polyribosome is attached to the 
chromosome at the site of an irregu- 
larly shaped granule ~ 75 A in diam- 
eter. Although this is somewhat smaller 
than the most recently reported diam- 
eter for isolated RNA polymerase 
molecules (8), we suggest that these 
are polymerase molecules which were 
actively transcribing genes at the time 
of cell rupture. Ribosomes are closely 
spaced in polyribosomes, and the ribo- 
some at the newly synthesized end of 
a messenger is almost always immedi- 
ately adjacent to the putative RNA 
polymerase molecule on the chromo- 
some. 

The spacing of polyribosomes along 
the chromosome is irregular, suggest- 
ing that initiation of transcription does 
not usually exhibit regular periodicity. 
Messenger RNA chain initiation at reg- 
ular intervals has been reported for the 
tryptophan operon in E. coli (9). In 
some instances, polyribosome lengths 
increase in a regular fashion along a 
portion of the chromosome. From this 

gradient of polyribosome length, one 
may estimate the location of the site 
of initiation of mRNA synthesis. In 
this position, a granule is often present 
which may correspond to an RNA 
polymerase at the promoter site (10) 
(Figs. 2 and 3). 

The termination points for DNA 
segments being transcribed as units are 
difficult to estimate because of rela- 
tively wide variability in spacing of 
polyribosome attachment sites. The 
longest active segment of chromosome 
so far observed is about 3 ,um and is 
shown in Fig. 2. A comparison with 
the estimated lengths of various bac- 
terial operons suggests that such a seg- 
ment probably is a polycistronic operon 
(~1). 

It is of interest to note that most 
regions of the extruded chromosomes 
do not have attached polyribosomes. 
This is consistent with the RNA-DNA 
hybridization experiments by Kennel 
(12) which indicate that a high per- 
centage of the E. coli chromosome 

Fig. 1. Electron micrograph showing a portion of the extruded contents of an osmotically ruptured E. coli cell. Fragile cells (2) 
were burst by rapid dilution (1: 50) into distilled water adjusted to pH 9. The burst cells were immediately centrifuged (3200 
rev/min at 19.3 cm radius for 3 to 5 minutes) through a O.1M sucrose plus 10 percent formalin (pH 8.5) cushion onto carbon- 
coated grids. The grids were rinsed in 0.4 percent Kodak Photo-fio, dried, and stained for 1 minute each in 1 percent phospho- 
tungstic acid and 1 percent uranyl acetate, with both stains dissolved in 70 percent ethanol. The grids were then rinsed briefly 
in 95 percent ethanol, 100 percent ethanol, and isopentane and air-dried. 
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Figs. 2 and 3. Genetically active and inactive portions of E. coli chromosomes. The 
polyribosomes attached to the active segments exhibit imperfect gradients of increasing 
lengths. The shorter, most distal polyribosomes in Fig. 2 may have resuted from mRNA 
degradation. The arrows indicate putative RNA polymerase molecules presumably on 
or very near the initiation sites of these active loci. Fig. 4. A portion of an E. coli 
chromosome showing presumptive 16S and 23S rRNA loci in action. This segment was 
somewhat stretched during the isolation procedures. When not stretched, similar regions 
are 1.5 Am long. 
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either is responsible for very rare spe- 
cies of RNA or is never transcribed. In 
regions where no polyribosomes are at- 
tached, numerous small granules the 
size of the putative RNA polymerase 
molecules are associated with the chro- 
mosome. 

The kinetics of ribosomal RNA 
(rRNA) synthesis in E. coli indicate 
that the 16S and 23S cistrons are tran- 
scribed simultaneously by a relatively 
large number of RNA polymerase mol- 
ecules as compared to the transcription 
of structural genes (13). In addition, 
ribosomal proteins, rather than ribo- 
somes, become associated with the 
rRNA's as they are synthesized (14). 
Chromosomal segments with 60 to 70 
attached fibrils have been observed 
(Fig. 4). Since the length of such seg- 
ments is close to the length of DNA 
necessary to code for one 16S and one 
23S rRNA (15), we suggest that these 
segments are rRNA genes. Studies with 
Bacillus subtilis (16) and Proteus mira- 
bilis (17) have shown that the 16S and 
23S cistrons are contiguous in those 
species. 

Experiments on RNA-DNA hybrid- 
ization (18) have shown that approxi- 
mately 0.4 percent of the E. coli chro- 
mosome contains cistrons coding for 
rRNA. Taking into consideration the 
length of the chromosome and the 
amount of DNA necessary to code for 
the 16S and 23S rRNA molecules, this 
value indicates that the E. coli chro- 
mosome contains no more than six 
segments with tandem 16S and 23S 
cistrons (19). Our observations sug- 
gest that these sites are quite widely 
spaced on the chromosome. This con- 
clusion is supported by biochemical 
data in another study using E. roli 
(20). 

We believe that refinement of the 
techniques used in this study should 
provide a powerful tool for direct ob- 
servation of specific active genetic loci 
in microbial systems, and that the pro- 
cedures will prove generally useful for 
cytogenetic analysis at the molecular 
level. 

0. L. MILLER, JR. 
Biology Division, Oak Ridge National 
Laboratory, Oak Ridge, Tennessee 
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nificant quantities of the exogenous 
amino acid are converted to dopamine, 
as occurs with endogenous dopa. 

After intraperitoneal administration, 
L-dopa is largely methylated to 3-0- 
methyl-dopa, which is then decarbox- 
ylated and converted to HVA. A sur- 
prisingly high percentage (more than 
half) of a dose of L-dopa is O-meth- 
ylated within the first 20 minutes after 
administration (5). Conversion to cen- 
tral catecholamines is actually a very 
minor metabolic route of exogenous 
L-dopa. Since S-adenosylmethionine 
(SAMe) is the methyl donor in the 
O-methylation of L-dopa and dopa- 
mine (6), it seemed likely that large 
amounts of SAMe must be utilized in 
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L-Dihydroxyphenylalanine: Effect on 

S-Adenosylmethionine in Brain 

Abstract. Forty-five minutes after intraperitoneal injection of a single dose (100 
milligrams per kilogram) of L-dihydroxyphenylalanine, the concentration of S- 
adenosylmethionine in rat brain was lowered by 76 percent. As little as 10 milli- 
grams of L-dihydroxyphenylalanine per kilogram decreased content of S-adenosyl- 
methionine in the adrenal medulla by 51 percent, whereas 100 milligrams per 
kilogram did not significantly depress concentration of S-adenosylmethionine in 
the liver in this time interval. Concentration of S-adenosylmethionine in the brain 
varied diurnally; L-dihydroxyphenylalanine lowered this concentration whether 
administered at the daily peak or at the nadir. 
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