

Fig. 3. Developmental relations of the specialized cells in the gastric glands.

logically observed in transition to this cell type (9). However, many electron microscopists have classified the cells as epithelial cells, because the cells abut on the basement membrane and are connected with the adjacent cells by the desmosomes (10). Our submicroscopic observation of immature argyrophil cells, as transitional cells, in the epithelial wall of the subcutaneous gastric grafts clearly demonstrated the epithelial nature of the cells. This was supported by the findings that rosette, acinar, or tubular structures in the human argentaffin cell tumor were formed by cells with microvilli (11) and that the neoplastic process in the stomach of the Praomys (Mastomys) natalensis began as a focal proliferation of argyrophil cells deep in the mucosa and infiltrated into the submucosa (12). Reported cases of human intestinal neoplasms with both carcinoid pattern and mucous secretion are also suggestive (13).

> MUTSUSHI MATSUYAMA HARUMI SUZUKI

Divergent Biological Effects of Adenosine and Dibutyryl

Adenosine 3',5'-Monophosphate on the Isolated Fat Cell

Abstract. Adenosine 3',5'-monophosphate stimulated production of carbon di-

oxide and lipid from glucose, whereas its dibutyryl derivative inhibited this con-

version. Addition of the dibutyryl derivative to the isolated fat cell further stimu-

lated lipolysis induced by adrenocorticotropic hormone, whereas addition of adenosine 3',5'-monophosphate inhibited this lipolysis. Hence, measured by these two

parameters, the biologic properties of adenosine 3',5'-monophosphate and its

Aichi Cancer Center Research

dibutyryl derivative are distinctly different.

Adenosine 3',5'-monophosphate (cy-

clic AMP) has been indicated as a

"second messenger" in multiple biologic

systems. In particular, the reaction of

multiple hormones has been shown to

involve, at least in part, cyclic AMP

and adenyl cyclase (1). Both cyclic

AMP and its dibutyryl derivative (di-

butyryl cyclic AMP) have been studied

with regard to their ability to promote

studied in fat (3) and muscle (4), the

Institute, Nagoya, Japan

References and **Notes**

- A. W. Williams, Brit. J. Surg. 41, 319 (1953);
 E. S. Finckh and G. W. Milton, J. Pathol. Bacteriol. 80, 143 (1960); G. S. Gunter, Gastroenterology 15, 708 (1960).
 C. E. Stevens and C. P. Leblond, Anat. Rec.
 C. E. Stevens and C. P. Leblond, Computer 100 (1970).

- M. Matsuyama, H. Suzuki, W. Nakamura, Nagoya Med. J. 14, 97 (1968); M. Matsuyama and H. Suzuki, Gann 60, 333 (1969). H. F. Helander, Gastroenterology
- 5. H. 56. (1969)
- 6. Diagnosis of the immature argyrophil cells based mainly on the presence of numerous vacuoles which have an amorphous content of low-electron opacity, since the maturation of beta-cell granules, from an amorphous material to dense granules, in the pancreatic islets of neonatal rabbits was established [S. S. Lazarus, S. H. Shapiro, B. W. Volk, Lab. Invest. 16, 330 (1967)]. The assumption that the mucous neck cells are precursor for the chief cells has been made by several workers [R. E. Corpron, Amer. J. Anat. 118, 53 (1966); Helander, Gastroenterology 56, (1969)].
- M. Matsuyama and H. Suzuki, unpublished 7. data
- D. M. Coder, R. G. Shorter, D. C. McIlrath, Surgery 64, 769 (1968). S. F. Townsend, Amer. J. Anat. 109, 133 8. 9.
- (1961). 10. K Kurosumi, in Int. Rev. Cytol 11 1
- (1961); H. F. Helander, J. Ultrastruct. Res. Suppl. 4, 1 (1962); S. Ito, in Handbook of Physiology; Alimentary Canal, C. F. Code, Ed. (American Physiological Society, Wash-ington, D.C., 1967), vol. 2, p. 705. S. A. Luse and P. E. Lacy, *Cancer* 13, 334 (1960); W. C. Black and H. E. Haffner, *ibid*.
- 11. S **21**, 1080 (1968). K. C. Snell and H. L. Stewart, *Science* **163**,
- 12. K. 470 (1969). 13. F. J. Hernandez and J. D. Reid, Arch. Pathol.
- 88, 489 (1969). We thank Prof. T. Nagayo and
- Dr. M. Tata Hoshino for their advice, and the Lady Ta Memorial Trust for a fellowship to M.M.

cyclic AMP Cyclic AMP

Base

absence of ACTH.

Addition

Dibutyryl 1.0 μ mole 299.1 ± 18.5 2.5 µmole 31.4 ± 9.1 ACTH 0.2 μg 741.6 ± 7.3 ACTH 4 $0.2 \ \mu g +$ dibutvrvl $1 \mu mole$ 916.7 ± 57.3 cyclic AMP ACTH $\begin{array}{ccc} 0.2 & \mu \mathrm{g} & + \\ 2.5 & \mu \mathrm{mole} \end{array}$ cyclic AMP 456.3 ± 21.4

Table 1. Effects of dibutyryl cyclic AMP and

cyclic AMP on lipolysis in the presence and

Concen-

tration

per

milli-

liter

Nanomoles

of glycerol*

released per

105 cell/

1 hour

 7.5 ± 3.2

Condition of experiment is the same as in Fig. 1, except that the results are reported as nanomoles of glycerol released per 10^5 cells per 1 hour. The values are an average of three observations, \pm standard error of the mean.

Gliemann (5) as modified by Kitabchi (6). As an index of lipolysis, the release of glycerol from the isolated fat cell was determined enzymatically by the method of Chernick (7).

Figure 1, A and B, depicts the results of experiments in which the effect of varying concentrations of cyclic AMP and its dibutyryl derivative were tested on glucose oxidation and uptake. The dose-response curve of cyclic AMP on glucose conversion to CO₂ follows a pattern showing marked stimulation of this conversion at low concentrations of cyclic AMP, with more gradual stimulation at higher concentrations. In contrast, dibutyryl cyclic AMP does not act in the same way as cyclic AMP, but instead inhibits the conversion of glucose to CO₂ below the base line in a manner proportional to the concentration of dibutyryl cyclic AMP in the solution. Essentially similar results were obtained when the conversion of glucose carbon into lipids was measured, that is, cyclic AMP stimulated, whereas dibutyryl cyclic AMP inhibited, lipogenesis from glucose.

The lipolytic effects of cyclic and dibutyryl cyclic AMP were measured at both high and low concentrations of nucleotide and compared to high and low concentrations of insulin. The data in Table 1 show that both dibutyryl cyclic and cyclic AMP promote endogenous lipolysis and that dibutyryl cyclic AMP potentiates the lipolytic effect of adrenocorticotropic hormone (ACTH), but cyclic AMP inhibits lipolysis induced by ACTH. The antilipolytic property of cyclic AMP on ACTH-induced lipolysis has not hitherto been reported. To study this mechanism of the two

24 JULY 1970

AMP and cyclic AMP have not been previously reported. This report presents new data on the effect of these two nucleotides in the isolated fat cell and compares their lipolytic and antilipolytic properties with those of glucose transport and oxidation. The insulin-like activity of the cyclic compounds was measured by incorporation of glucose, uniformly labeled with ¹⁴C, into ${}^{14}\text{CO}_2$ and lipids in the isolated fat cell of the rat by the method of

comparative effects of dibutyryl cyclic

³ April 1970

Table 2. Effect of insulin on lipolysis induced by cyclic AMP and dibutyryl cyclic AMP. Values are means \pm standard error of the mean; *n*, number of observations per datum.

Insulin conc. (molar)	Nanomoles of glycerol released per 10 ⁵ cells per 1 hour*				
	Control $(n = 10)$	Cyclic AMP		Dibutyryl cyclic AMP	
		2.5 mM (n = 6)	5.0 mM (n = 5)	0.5 mM (n = 8)	1.0 mM (n = 8)
	$\begin{array}{c} 13.2 \pm 1.5 \\ 20.1 \pm 3.4 \\ 26.2 \pm 3.2 \\ 39.1 \pm 6.0 \end{array}$	$27.6 \pm 3.7 \\ 4.2 \pm 2.4 \\ 8.8 \pm 7.3 \\ 0.8 \pm 0.2$	$\begin{array}{c} 39.4 \pm 2.8 \\ 26.5 \pm 6.6 \\ 41.0 \pm 5.4 \\ 33.5 \pm 7.2 \end{array}$	$\begin{array}{c} 48.6 \pm 7.3 \\ 28.3 \pm 2.6 \\ 26.2 \pm 3.6 \\ 74.2 \pm 4.0 \end{array}$	$\begin{array}{c} 147.5 \pm 16.1 \\ 112.0 \pm 13.2 \\ 118.9 \pm 16.0 \\ 263.7 \pm 10.5 \end{array}$

* The condition of experiment is the same as in Table 1.

nucleotides further, the effect of low and high concentrations of insulin was tested. At low concentrations of cyclic AMP, low concentrations of insulin exert an antilipolytic effect (see Table 2). However, this effect, in most cases, is nullified at higher concentrations of cyclic and dibutyryl cyclic AMP. The endogenous lipolytic effect of both nu-

Molar concentration $\times 10^{-3}$

Fig. 1. Dose response curves for cyclic AMP (A) and dibutyryl AMP (B) as measured by glucose uptake and oxidation. The results are reported as nanoatoms of ¹⁴CO₂ released per 100,000 cells per 2 hours above or below the base line. The incubation system consists of 100,000 fat cells, 0.5 mM glucose in a Krebs-Ringer and bicarbonate buffer with 4 percent albumin (pH 7.4) in a total volume of 2 ml. Incubation was carried out under an atmosphere of 95 percent O_2 and 5 percent CO₂ at 37°C in the presence or absence of various concentrations of cyclic AMP or dibutyryl cyclic AMP. Each point is an average of five observations.

388

cleotides was markedly reduced by 2 μ unit (1.4 × 10⁻¹¹M) of insulin, but not at high concentrations of insulin. This suggests a competitive mechanism of inhibition between insulin and both forms of cyclic AMP. Hepp et al. (2) reported that insulin had no effect on lipolysis induced by cyclic and dibutyryl cyclic AMP, but that their measurements were made only at high concentrations of insulin.

It has previously been assumed that the increased potency of dibutyryl cyclic AMP over cyclic AMP may be due to its more nonpolar nature, which permits easier penetration of the cell membrane in the biological system. The data presented here suggest that other explanations, in addition to solubility, must be offered for the divergent action of these two nucleotides, since the more nonpolar analog of the two cyclic nucleotides, dibutyryl cyclic AMP, showed no stimulatory effect on glucose oxidation, whereas the presumed

more polar analog, cyclic AMP, showed significant stimulation of glucose oxidation and lipogenesis. The question may now be raised as to the nature and structure of the "second messengers" in biological systems. Apparently, profound differences are introduced by the addition of the two butyrate moieties on the cyclic AMP molecule. These data, furthermore, serve to emphasize the caution that needs to be exercised in assigning biological roles to derivatives of cyclic nucleotides that do not in fact possess the same structure.

> SOLOMON S. SOLOMON JAMES S. BRUSH Авваѕ Е. Кітавсні

Laboratories of Endocrinology and Metabolism, Veterans Administration Hospital, and Departments of Biochemistry and Medicine, University of Tennessee, Memphis 38104

References and Notes

- 1. G. A. Robison, R. W. Butcher, E. W. Suther-
- Iand, Annu. Rev. Biochem. 37, 149 (1968).
 K. D. Hepp, L. A. Menahan, O. Wieland, R. H. Williams, Biochim. Biophys. Acta 184, 157 (1960). 554 (1969).
- Bray, Biochem. Biophys. Res. Commun. 3. G. A G. A. Bray, Biochem. Biophys. Res. Commun. 28, 621 (1967).
 A. Chambaut, D. Eboue-Bonis, J. Hanoune, H. Clauser, *ibid.* 34, 283 (1969).
 J. Gliemann, Diabetes 14, 643 (1965).

- A. E. Kitabchi, J. Clin. Invest. 49, 979 (1970).
 S. S. Chernick, Methods Enzymol. 14, 627
- 7. S
- (1969) 8. Supported in part by grants from the Veterans Administration. We thank Mrs. Marjorie Palazollo for technical assistance, S.S.S. is a recipient of research associateship from the Veterans Administration.
- 9 March 1970; revised 24 April 1970

Allopurinol: Alteration in Pyrimidine Metabolism in Man

Abstract. In addition to its well-established inhibitory effect on uric acid synthesis, allopurinol appears to alter substantially pyrimidine metabolism, as evidenced by a striking increase in the urinary excretion of orotidine and orotic acid. Allopurinol ribonucleotide and xanthosine 5'-monophosphate are potent inhibitors of human erythrocyte orotidylic decarboxylase and provide a possible mechanism for this effect.

Allopurinol [4-hydroxypyrazolo(3,4d)pyrimidine] is widely used in the treatment of hyperuricemia and gout. This agent, an analog of hypoxanthine, is a potent inhibitor of xanthine oxidase, which catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid (1). Accordingly, its administration in man leads to a prompt decrease in the formation of uric acid and an increase in the excretion of hypoxanthine and xanthine (2). In the present study, we demonstrate that the administration of allopurinol and its

major metabolic product, oxipurinol, also produces a substantial inhibition of de novo pyrimidine biosynthesis.

The urinary excretion of purines and pyrimidines in six patients with gout, before and during allopurinol therapy, was assessed with an ultraviolet analyzer (3). With the use of this instrument, low molecular weight constituents in urine are separated by automated high-resolution, high-pressure, anion-exchange chromatography and those substrates exhibiting absorbance in the ultraviolet spectrum are detected with a