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Calcium Oxalate: Crystallographic Analysis in 

Solid Aggregates in Urinary Sediments 

Abstract. A relationship between crystallographic structure and morphological 
form of calcium oxalates in urinary sediments is established. The common tetrag- 
onal bipyramids have been confirmed as weddellite from their electron diffraction 
patterns. Other solid forms, such as needles, biconcave disks, and dumbbell forms, 
that can appear in hyperoxalurias, of both metabolic and alimentary origin, have 
been identified as whewellite. Micrographs reveal fibrous structure on those whew- 
ellite polycrystalline aggregates. 

Urinary calcium oxalate sedimients of pared as follows. Immediately after the 
healthy persons and patients with renal urine was collected, it was centrifuged 
stones have been studied by electron in warm, conical glass tubes (1500 rev/ 
microscopy (Siemens Elmiskop IA), min, 1 minute), and the sediment was 
and the different crystalline types have washed with distilled water and dried. 
been identified by diffraction analysis Crystals were observed directly and by 
of selected areas. Specimens were pre- replica with the Bradley method (1). 
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Fig. 1. (A) Bipyramid tetragonal crystal of weddellite. (B) Aggregated prismatic crys- 
tals. (C) Carbon replica of a typical dumbbell form of polycrystalline aggregates. (D) 
Replica of a dumbbell form with high magnification. On its surface the fibrillar structure 
is observed. 
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Fig. 2. Electron diffraction patterns of (A) a bipyramid tetragonal crystal of weddellite 
(calcium oxalate dihydrate) with (001) orientation; (B) the same diagram as (A), after 
electron bombardment, which still presents spots of weddellite (403) and rings which 
correspond to lime (111) (200) (220); (C) the crystalline aggregate of (B) which pre- 
sents the principal rings (020), (202), (112) of whewellite (calcium oxalate monohy- 
drate); (D) a dumbbell form (like that in Fig. 1C) which presents a weak ring (020) 
Ox of whewellite even though very low beam intensity has been used in order to delay 
the transformation to calcite (104) C and lime (200) L. 
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To prevent the decomposition of the 
crystals during observation, the speci- 
mens were cooled with liquid nitrogen. 

Tetragonal bipyramids are the most 
abundant forms observed but others 
with less well-defined crystallization 
(ellipsoid, biconcave disks, needles, 
spherulites, and dumbbell forms) were 
also found, especially in cases of meta- 
bolic hyperoxalurias or in healthy in- 
dividuals on a rich oxalate diet. Tetrag- 
onal bipyramids (Fig. 1A) have been 
recognized as weddellite (2). Our anal- 
ysis by electron diffraction (Fig. 2A) 
confirms this. The increase in tempera- 
ture produced by electron bombardment 
and the high vacuum rapidly convert 
the weddellite crystals to calcite and 
then to calcium oxide (Fig. 2B). 

Dumbbell forms have been identified 
as whewellite on the basis of their 
shapes (3). Electron-diffraction ring 
patterns corresponding to whewellite 
crystals (Fig. 2, C and D) have been 
observed in the prismatic crystal ag- 
gregates (Fig. 1B), dumbbell-shaped 
(Fig. 1C), and spherulite forms of cal- 
cium oxalate. The patterns of dumbbell 
forms do not have very sharp rings 
because low-intensity electron beams are 
used to delay the transformation to cal- 
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cite. Dumbbell forms are polycrystal- 
line aggregates with fibrous structures 
(Fig. 1D). 

Dumbbell or sandglass shapes are not 
exclusive of whewellite. They have also 
been found in mineral substances of 
fibrillar structure like hematite (4), in 
some organic polymers (5), and in non- 
polymeric substances (6). 

Such aggregates may be produced 
through a branching or fanning mecha- 
nism during the growth of needles in 
length. The aggregates gradually ap- 
proach the spherical form with cavities 
in the center which may remain notice- 
able in the final spherulite. 

Needles, isolated or aggregated in 
fascicles with irregular morphology, do 
not have crystalline structures as perfect 
as those from plant cells (7). Dumbbell 
forms and spherulites with hollowed 
central areas such as those found in the 
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Attine ants, by supplying organic 
substrate, maintain a symbiotic rela- 

tionship with fungi which in turn serve 
both as a food source (1) and energy 
reserve for the colony. In this symbio- 
sis the ants and their fungi have de- 

veloped an efficient means of utilizing 
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(1). The fungus gardens of attine ants 
consist of organic matter loosely held 

together by fungus mycelium (2). The 

organisms accepted as true ant fungi 
are the Basidiomycetes Agaricus gongy- 
lophora, Lepiota sp., and Auricularia 
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Abstract. Yeasts were detected in the fungus gardens of Atta cephalotes and 

Acromyrmex octospinosus by scanning electron microscopy and by microbio- 

logical techniques. 
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