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to the unsaturated gaseous hydro- 
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material in the oceans (9), and our 
work suggests that it is one source 
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Properties and Composition of Lunar Materials: Earth Analogies 

Abstract. The sound velocity data for the lunar rocks were compared to numer- 
ous terrestrial rock types and were found to deviate widely from them. A group of 
terrestrial materials were found which have velocities comparable to those of the 
lunar rocks, but they do obey velocity-density relations proposed for earth rocks. 
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In spite of the appearance of the re- 
turned lunar samples, the lunar seismic 
signal continued to ring for a remark- 
ably long time-a characteristic of very 
high Q material. The lunar rocks, when 
studied in the laboratory, exhibited a 
low Q (2). Perhaps most startling of all, 
however, was the very low sound veloc- 
ity indicated for the outer lunar layer 
deduced from the LEM impact signal. 
The data obtained on the lunar rocks 
and fines agree well with the results of 
the Apollo 12 seismic experiment (2, 
3). These rock velocities are startlingly 
low. The measured velocities on a vesic- 
ular medium grained, igneous rock 
(10017) having a bulk density of 3.2 
g/cm3 were vp = 1.84, and v. = 1.05 
km/sec. The results for a microbreccia 
(10046) with a bulk density of 2.2 g/ 
cm3 were Vp = 1.25 and vs = 0.74 km/ 
sec for the compressional (vp) and 
shear (v,) velocities. 

It was of some interest to consider 
the behavior of these lunar rocks in 
terms of the expected behavior based 
on measurements of earth materials. 
Birch (4) first proposed a simple linear 
relation between compressional velocity 
and density for rocks. This relation was 
examined further by Anderson (5) who 
showed that this was a first approxima- 
tion to a more general relation, deriva- 
ble from a dependence of the elastic 
moduli with the density through a 
power function. Comparison of the re- 
sults obtained from the returned lunar 
rocks with the predictions of these 
relationships expresses graphically the 
manner they deviate from the be- 
havior of rocks found on earth. The 
velocities are remarkably lower than 
what would be predicted from either 
the Birch or Anderson relationships. 

To account for this very low velocity, 
we decided to consider materials other 
than those listed initially by Birch (4) 
or more detailed compilation of Ander- 
son and Liebermann (6). The search 
was aided by considerations of much 
earlier speculations concerning the na- 
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Table 1. Comparison of compressional velocities of lunar rocks and various earth materials. 

Lunar rocks Vp Sedimentary vP Metamorphic vp Igneous vp Minerals vv 
and cheeses (km/sec) rocks (km/sec) rocks (km/sec) rocks (km/sec) (km/sec) 

Sapsego (Swiss) 2.12 Dolomite 5.6 Schist 5.1 Granite 5.9 Corundum 10.8 
Lunar Rock 10017 1.84 Dolomite 4.69 Slate 5.39 Syenite 5.7 Periclase 9.69 
Gjetost (Norway) 1.83 Limestone 5.06 Charnockite 6.15 Diorite 5.78 Spinel 9.91 
Provolone (Italy) 1.75 Limestone 5.97 Gneiss 4.9 Oligoclase 6.40 Garnet 8.53 
Romano (Italy) 1.75 Greywacke 5.4 Marble 6.02 Andesite 5.23 Quartz 6.05 
Cheddar (Vermont) 1.72 Greywacke 6.06 Quartzite 5.6 Gabbro 5.8 Hematite 7.90 
Emmenthal (Swiss) 1.65 Sandstone 4.90 Amphibolite 6.70 Gabbro 6.8 Olivine 8.42 
Muenster (Wisconsin) 1.57 Eclogite 6.89 Norite 6.50 Trevorite 7.23 
Lunar Rock 10046 1.25 Diabase 6.33 Lime 7.95 
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ture of the moon (7), and a significant 
group of materials was found which 
have velocities that cluster about those 
actually observed for lunar rocks. 

These materials are summarized in 
Table 1, where, for emphasis, common 
rock types found on earth are listed for 
comparison. The materials studied 
were chosen so as to represent a broad 
geographic distribution in order to pre- 
clude any bias that might be intro- 
duced by regional sampling. It is seen 
that these materials exhibit compres- 
sional velocities that are in consonance 
with those measured for the lunar 
rocks-which leads us to suspect that 
perhaps old hypotheses are best, after 
all, and should not be lightly discarded. 
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A comparison of these low velocity 
materials with the predictions of Birch 
and of Anderson is shown in Fig. 1. It 
is at once apparent that these materials 
do yield values of velocity that are pre- 
dicted by these relations for their den- 
sities. Thus the curve of Birch for the 
rock types diabase, gabbros, and 
eclogites fit the cheeses surprisingly 
well. This apparent inconsistency, in 
that the cheeses do obey these relation- 
ships by having a velocity appropriate 
to their density, in contrast to the lunar 
rocks with which they compare so well, 
may readily be accounted for when one 
considers how much better aged the 
lunar materials are. 
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temperature is. Aqueous dispersions of 
extracted lipids have transitions at the 
same temperature as the membranes 
from which they were extracted (1). 
These results were interpreted as evi- 
dence for the bilayer conformation of 
lipids in the membrane by analogy with 
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the well-established behavior of aqueous 
dispersions of phospholipids, which ex- 
hibit crystalline to liquid crystal transi- 
tions of the hydrocarbon tails within 
the bulk lamellar array (2, 3). This in- 
terpretation has been corroborated (4) 
with low-angle x-ray diffraction, which 
showed that the spacings below the 
transition are characteristic of a lattice 
of hexagonally packed hydrocarbon 
chains within a lamellar array. The 
x-ray results rule out extensive hydro- 
phobic associations of lipid and protein. 

We report here that the membranes 
of viable M. laidlawii undergo this 
transition and that the transition occurs 
at the same temperature in the orga- 
nisms, membranes isolated from the or- 
ganisms, and lipids extracted from the 
membranes. We also report the enthalpy 
per gram of lipid for the transition in 
intact membranes and in aqueous sus- 
pensions of the extracted lipids. 

Mycoplasma laidlawii (strain B, PG9) 
were grown at 37?C in lipid-free tryp- 
tose medium supplemented with pal- 
mitic acid (5, 6). Under these condi- 
tions, 65 to 70 percent of the fatty 
acids of the membrane lipids are palmi- 
tate. Growth was monitored by mea- 
suring optical density at 500 nm with a 
Zeiss spectrophotometer. Cells in the 
middle of the logarithmic phase of 
growth were collected at 19/2 hours by 
centrifugation and washed with 0.25M 
NaCl at 4?C. Membranes were pre- 
pared by osmotic lysis (5) followed by 
centrifugation at 100,000g for 50 min- 
utes at 4?C. The membranes were re- 
suspended in a buffered medium of pH 
8 consisting of 0.03M tris(hydroxy- 
methyl)aminomethane, 0.2M NaCl, and 
0.005M MgCl2. They were then re- 
sedimented for calorimetry. 

Lipid was extracted from the mem- 
branes by the method of Folch et al. 
(7). All protein remaining in the organic 
phase was denatured by evaporation to 
dryness and removed by filtration. The 
lipids were dried to constant weight un- 
der vacuum to remove all traces of 
organic solvent before they were sus- 
pended in the buffer for calorimetry. 
The amount of lipid per unit weight of 
membrane pellet was determined by 
weighing the lipid recovered by the ex- 
traction procedure described above. 

Calorimeter scans were made in a 
Perkin-Elmer DSC-1B differential scan- 
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Calorimeter scans were made in a 
Perkin-Elmer DSC-1B differential scan- 
ning calorimeter with a modified sam- 
ple head at full-scale sensitivity of 1 
meal per second and a scan rate of 5? 
per minute. Scans were begun at 0?C, 
and stearic acid was used to calibrate 
the apparatus (temperature and power). 
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Calorimetric Detection of a Membrane-Lipid Phase 

Transition in Living Cells 

Abstract. The membrane lipids in living Mycoplasma laidlawii exhibit a phase 
transition characteristic of that from crystal to liquid crystal within the bilayer 
conformation. The transition occurs at the same temperature in viable organisms, 
membranes isolated from the organisms, and isolated membrane lipids. The 
enthalpy of the transition in the membrane is compared with that of an aqueous 
suspension of isolated membrane lipids. The result is consistent with presence of 
an extended lipid bilayer in the native membrane. 
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