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Lunar Ephemeris: Delaunay's Theory Revisited 

Abstract. Delaunay's reduced Hamiltonian of the main problem in lunar theory 
is checked against a new analytical theory based on Lie transforms. It is found to 
be correct up to order 9 with the exception of one error in addition at order 7. 

Meaningful analysis of dynamical 
data returned from lunar experiments 
(radar echoes, orbiters, Apollo mis- 
sions, and laser retroranging reflectors) 
requires highly accurate lunar ephem- 
erides beyond the standards achieved 
by traditional celestial mechanics (1). 
Experts are not unanimous as to the 
best approach toward that goal: a 
straightforward numerical integration 
(2), an improvement of Hill-Brown's 
semianalytical theory (3), a modified 
version of Hansen's special perturba- 
tions (4), or a completely analytical 
theory (5). The most efficient answer 
will likely be a coexistence of methods 
that compensate one another in their 
respective weaknesses. 

Until very recently analytical solu- 
tions were at a disadvantage: they re- 
quire an extraordinary amount of ex- 
tensive and complex algebraic manipu- 
lations. One hundred years have now 
passed, and Delaunay's Theorie du 
Mouvement de la Lune (6) is still the 

only analytical solution pursued sys- 
tematically beyond the first few trivial 
orders. 

Soon after the computers proved suc- 
cessful in the scientific field, astrono- 

Table 1. Corrections to Delaunay's formulas 
for the mean motions of lunar theory. 
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mers considered programming them 
to automate literal computations (7). 
In that perspective, reproducing De- 
launay's work (6) appeared as the ulti- 
mate test of what software packages 
should be able to do for celestial me- 
chanics (8). 

The main problem of lunar theory 
focuses on the system earth-sun-moon, 
with those bodies taken as mass points. 
It assumes that the sun moves on a 
fixed Keplerian ellipse around the cen- 
ter of mass of the pair earth-moon and 
that the moon, although it remains 
closely in the neighborhood of the 
earth, revolves around it on what is 
thought of basically as a Keplerian el- 
lipse but perturbed by the solar attrac- 
tion. The solar effect is developed in 
trigonometric series in four arguments: 
' (the mean anomaly of the sun), I 
(the mean anomaly of the moon), F 
(the elongation of the moon from its 
ascending node), and D (the mean 
elongation of the moon from the sun). 
The coefficients in the trigonometric 
series are power series in five variables: 
m (the ratio of the mean motions of 
sun and moon), a (the ratio of the 
semimajor axes for the Keplerian el- 
lipses of moon and sun), e (the ec- 
centricity of the moon's orbit), y (the 
sine of half the inclination of the moon's 
orbit), and e' (the eccentricity of the 
sun's orbit). Other quantities, like the 
mass ratios sun/(earth + moon + sun) 
and moon/ (earth + moon) and the 
gravitational coefficient, are also re- 
tained as symbols, so that the results 
of an analytical development can be 
used to improve their numerical values 
from fittings to observations. 

The essence of the solution consists 
in eliminating all four angles from the 
differential equations by an averaging 
technique. We have selected a perturba- 
tion algorithm based on Lie transforms 
(9). 

We aimed provisionally at a theory 
complete to order 8, roughly one order 

beyond that of Delaunay. The averag- 
ing proceeded in four steps. The elimi- 
nation of the monthly terms (that is, 
terms containing 1), which is in prin- 
ciple a straightforward operation, was 
so vast a project that it had to be 
staged in six operations-each one a 
continuous run of 3 hours on an IBM 
360-44 with a core of 32,000 words 
and two disks of 250,000 words. 
The subsequent elimination of the an- 
nual terms (that is, terms containing 1' 
but not 1) entailed a decrease in order 
of one unit through a division by m, 
elimination of the long-period terms 
(that is, terms containing neither I nor 
I') implied a division by m2, thus a de- 
crease in order by two units. The elimi- 
nation of the annual terms produced a 
very long-period term 41'--21--2F + 
4D, whose existence escaped Delaunay's 
attention (10). All computations were 
carried automatically by means of a 
package of subroutines assembled to 
process echeloned series (11). 

After obtaining the averaged mean 
motions to order 10, we compared our 
results with Delaunay's formulas for 
the mean anomaly, the argument of 
perigee, and the longitude of the node. 
But the constants of motion in our 
theory differ from Delaunay's con- 
stants; appropriate adjustments were 
made analytically by machine. The con- 
clusions are truly startling. Delaunay 
worked at his theory without any as- 
sistance, by hand, for some 20 years 
continuously; his literal calculations 
cover two volumes in quarto of 400 
pages each; he alone proofread them. 
Yet we recovered all terms to order 9 
in Delaunay's Hamiltonian (6, chap. 
6, p. 234) with the exception of the 
term in m3y2e'2. Its coefficient should 
be 33/16, but Delaunay gave it as be- 
ing 23/16. The mistake is easily ex- 
plained. In Delaunay's theory this er- 
roneous term is the sum of three 
contributions: 

-(45/16)mW2ye' 2 

brought by operation 52 (6, chap. 4, 
p. 122); 

(147/32)m3y2e' 2 

brought by operation 53 (6, chap. 4, 
p. 123); and 

(9/32)msre' 2 

brought by operation 54 (6, chap. 4, 
p. 123). Later on (6, chap. 6, p. 234) 
they are added together, and at this 
moment Delaunay made his slip. 

The error is not a misprint. It prop- 
agates consistently in the mean mo- 

1569 



tions io, og, ho (6, chap. 6, p. 237), as 
we show in Table 1. To Delaunay's 
Hamiltonian should be added the func- 
tion A =5/8(Qx/a)m3y2e'2; hence, we 
should recover the coefficients in the 
third column of Table 1 (as produced 
independently by our theory) by add- 
ing to Delaunay's coefficients the par- 
tial derivatives of A with respect to L, 
G, and H, respectively. We checked 
and did indeed obtain this result. 

A number of authors using De- 
launay's theory as a check for their 
theories (12) have reported possible 
errors in his work, but they never pin- 
pointed them. Our conclusion is that, 
except for the mistakes we uncover 
here, Delaunay's Hamiltonian and mean 
motion lo up to order 9 are faultless 
and the same is true for his mean 
motions g0 and ho up to order 7. 

ANDRE DEPRIT 
JACQUES HENRARD 

ARNOLD ROM 
Boeing Scientific 
Research Laboratories, 
Seattle, Washington 98124 

References 

1. J. D. Mulholland, Ed., Proc. JPL Seminar 
on Uncertainties in the Lunar Ephemeris 
(NASA Tech. Rep. 32-1247, Jet Propulsion 
Laboratory, Pasadena, Calif., 1968); Sym- 
posium on Observation, Analysis and Space 
Research Applications of the Lunar Motion 
(NASA Tech. Rep. 32-1386, Jet Propulsion 
Laboratory, Pasadena, Calif., 1969). 

2. J. D. Mulholland and C. J. Devine, Science 
160, 874 (1968); J. D. Mulholland, NASA 
Tech. Mem. 33-408 (Jet Propulsion Labora- 
tory, Pasadena, Calif., 1968); Nature 233, 247 
(1969). 

3. W. J. Eckert and H. F. Smith, Trans. Int. 
Astron. Union Part B 11, 447 (1962); in 
Symposium on the Theory of Orbits in the 
Solar System and in Stellar Systems, G. Con- 
topoulos, Ed. (IAU Symposium 25, Academic 
Press, New York, 1966), pp. 242-260; W. J. 
Eckert and D. A. Eckert, Astron. J. 72, 
1299 (1967). 

4. P. Musen, J. Geophys. Res. 68, 1439 (1963); 
J. Astronaut. Sci. 15, 124 (1968); M. Char- 
now, P. Musen, J. L. Maury, ibid. 15, 803 
(1968). 

5. D. Brouwer and G. M. Clemence, Methods 
of Celestial Mechanics (Academic Press, 
New York, 1961), pp. 559-562; D. Brouwer, 
in Trans. Int. Astron. Union Part B 11, 449 
(1962); G. Hori, Astron. J. 68, 125 (1963); J. 
Chapront and L. Mangeney, Astron. Astro- 
phys. 2, 425 (1969). 

6. C. E. Delaunay, Theorie du Mouvement de 
la Lune (Mallet-Bachelier, Paris, 1867), two 
volumes. 

7. M. S. Davis, Astron. J. 63, 464 (1958); P. 
Herget and P. Musen, ibid. 64, 11 (1959); 
D. Barton, ibid. 71, 438 (1966); "The Use 
of Electronic Computers for Analytical De- 
velopments in Celestial Mechanics, A Col- 
loquium held by Commission 7 of the IAU 
in Prague," 28-29 August 1967, ibid. 73, 194 
(1968). 

8. M. S. Davis, in Applications of Digital Com- 
puters, W. F. Freiberger and W. Prager, 
Eds. (Ginn, Boston, 1963), pp. 92-96. 

9. A. Deprit, Celestial Mech. 1, 12 (1969). 
10. H. Poincar6, in Oeuvres Completes (Gauthier- 

tions io, og, ho (6, chap. 6, p. 237), as 
we show in Table 1. To Delaunay's 
Hamiltonian should be added the func- 
tion A =5/8(Qx/a)m3y2e'2; hence, we 
should recover the coefficients in the 
third column of Table 1 (as produced 
independently by our theory) by add- 
ing to Delaunay's coefficients the par- 
tial derivatives of A with respect to L, 
G, and H, respectively. We checked 
and did indeed obtain this result. 

A number of authors using De- 
launay's theory as a check for their 
theories (12) have reported possible 
errors in his work, but they never pin- 
pointed them. Our conclusion is that, 
except for the mistakes we uncover 
here, Delaunay's Hamiltonian and mean 
motion lo up to order 9 are faultless 
and the same is true for his mean 
motions g0 and ho up to order 7. 

ANDRE DEPRIT 
JACQUES HENRARD 

ARNOLD ROM 
Boeing Scientific 
Research Laboratories, 
Seattle, Washington 98124 

References 

1. J. D. Mulholland, Ed., Proc. JPL Seminar 
on Uncertainties in the Lunar Ephemeris 
(NASA Tech. Rep. 32-1247, Jet Propulsion 
Laboratory, Pasadena, Calif., 1968); Sym- 
posium on Observation, Analysis and Space 
Research Applications of the Lunar Motion 
(NASA Tech. Rep. 32-1386, Jet Propulsion 
Laboratory, Pasadena, Calif., 1969). 

2. J. D. Mulholland and C. J. Devine, Science 
160, 874 (1968); J. D. Mulholland, NASA 
Tech. Mem. 33-408 (Jet Propulsion Labora- 
tory, Pasadena, Calif., 1968); Nature 233, 247 
(1969). 

3. W. J. Eckert and H. F. Smith, Trans. Int. 
Astron. Union Part B 11, 447 (1962); in 
Symposium on the Theory of Orbits in the 
Solar System and in Stellar Systems, G. Con- 
topoulos, Ed. (IAU Symposium 25, Academic 
Press, New York, 1966), pp. 242-260; W. J. 
Eckert and D. A. Eckert, Astron. J. 72, 
1299 (1967). 

4. P. Musen, J. Geophys. Res. 68, 1439 (1963); 
J. Astronaut. Sci. 15, 124 (1968); M. Char- 
now, P. Musen, J. L. Maury, ibid. 15, 803 
(1968). 

5. D. Brouwer and G. M. Clemence, Methods 
of Celestial Mechanics (Academic Press, 
New York, 1961), pp. 559-562; D. Brouwer, 
in Trans. Int. Astron. Union Part B 11, 449 
(1962); G. Hori, Astron. J. 68, 125 (1963); J. 
Chapront and L. Mangeney, Astron. Astro- 
phys. 2, 425 (1969). 

6. C. E. Delaunay, Theorie du Mouvement de 
la Lune (Mallet-Bachelier, Paris, 1867), two 
volumes. 

7. M. S. Davis, Astron. J. 63, 464 (1958); P. 
Herget and P. Musen, ibid. 64, 11 (1959); 
D. Barton, ibid. 71, 438 (1966); "The Use 
of Electronic Computers for Analytical De- 
velopments in Celestial Mechanics, A Col- 
loquium held by Commission 7 of the IAU 
in Prague," 28-29 August 1967, ibid. 73, 194 
(1968). 

8. M. S. Davis, in Applications of Digital Com- 
puters, W. F. Freiberger and W. Prager, 
Eds. (Ginn, Boston, 1963), pp. 92-96. 

9. A. Deprit, Celestial Mech. 1, 12 (1969). 
10. H. Poincar6, in Oeuvres Completes (Gauthier- 

Villars, Paris, 1952), vol. 8, pp. 332-366. 
11. A. Rom, in preparation. 
12. E. W. Brown, Amer. J. Math. 15, 335 (1893); 

Mem. Roy. Astron. Soc. 53, 46 (1899); H. 
Andoyer, Bull. Astron. 18, 205 (1901); ibid. 
19, 415 (1902); D. Barton, Astron. J. 72, 1281 
(1967). 

13 April 1970 

1570 

Villars, Paris, 1952), vol. 8, pp. 332-366. 
11. A. Rom, in preparation. 
12. E. W. Brown, Amer. J. Math. 15, 335 (1893); 

Mem. Roy. Astron. Soc. 53, 46 (1899); H. 
Andoyer, Bull. Astron. 18, 205 (1901); ibid. 
19, 415 (1902); D. Barton, Astron. J. 72, 1281 
(1967). 

13 April 1970 

1570 

Antarctic Ice Sheet: Stable Isotope Analyses of Byrd 
Station Cores and Interhemispheric Climatic Implications 

Abstract. Oxygen- and hydrogen-isotope analyses from the core hole through 
the Antarctic Ice Sheet at Byrd Station define temperature variations over more 
than 75,000 years. Synchronism between major climatic changes in Antarctica 
and the Northern Hemisphere is strongly indicated. The Wisconsin cold interval 
extended from 75,000 to 11,000 years ago. Three intra-Wisconsin warmer phases 
were all colder than pre- or post-Wisconsin times, which suggests that North 
American and Eurasian continental ice sheets did not disappear at any time dur- 
ing the Wisconsin. 

Antarctic Ice Sheet: Stable Isotope Analyses of Byrd 
Station Cores and Interhemispheric Climatic Implications 

Abstract. Oxygen- and hydrogen-isotope analyses from the core hole through 
the Antarctic Ice Sheet at Byrd Station define temperature variations over more 
than 75,000 years. Synchronism between major climatic changes in Antarctica 
and the Northern Hemisphere is strongly indicated. The Wisconsin cold interval 
extended from 75,000 to 11,000 years ago. Three intra-Wisconsin warmer phases 
were all colder than pre- or post-Wisconsin times, which suggests that North 
American and Eurasian continental ice sheets did not disappear at any time dur- 
ing the Wisconsin. 

Oxygen- and hydrogen-isotope analy- 
ses of ice samples from depths between 
99 and 2162 m within the 2164-m core 
hole (1) of 1968 through the Antarctic 
Ice Sheet at Byrd Station (80?01'S, 
119031'W, 1530-m elevation) are 
shown in Fig. 1. The values plotted 
represent the deviation (8) of oxygen 
(180/160) and hydrogen (D/H) ratios 
from the corresponding ratios for stan- 
dard mean ocean water (SMOW). The 8 
values for both oxygen and hydrogen 
are here expressed in per mil (2, p. 
214), even though the 8 for hydrogen is 
not uncommonly given' in percent be- 
cause of its larger magnitude. 

Each point on Fig. 1 represents the 
oxygen or hydrogen 8 value of a ho- 
mogenized strip sample ranging from 
30 to 151 cm long taken from the core 
at intervals ranging between 33 and 62 
m, except near the bottom where spot 
samples were taken. Two or more data 
points at a single level represent two 
or more adjoining strip samples. The 
8180 variations, up to 1.5 per mil, in 
adjacent samples are an expectable 
product of secular variation, as each 
homogenized sample represents several 
years of accumulated snow. 

A plot of 8O80 against 8D values in 
Byrd core samples fits a curve, 8D = 
7.9 8180, with slightly different slope 
than curves obtained from other areas. 
Since the 8D to 8180 relationship is pri- 
marily dependent on temperature, such 
curves may ultimately prove useful in 
defining subtle differences and variations 
in ancient environmental conditions. 

In the case at hand, the strong simi- 
larity of the oxygen and hydrogen 
curves (Fig. 1) testifies primarily to the 
reliability of sampling procedures, sam- 
ple handling, and analytical methods. 
Since the two curves are consistent, in- 
terpretative comments are made solely 
in terms of 8180 data. 

Age of ice at various levels is esti- 
mated from measured accumulation 
rates and calculations of thinning 
through flow, as prescribed by Bader 
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Age of ice at various levels is esti- 
mated from measured accumulation 
rates and calculations of thinning 
through flow, as prescribed by Bader 

and Nye (3, 4). A constant accumula- 
tion of 12 g cm-2 yr-1 of water is 
used for the Byrd Station accumulation 
area. This figure is based on 8 years of 
measurements made by one of the 
authors (A.J.G.) at a large number of 
snow stakes in the vicinity of Byrd Sta- 
tion. These data compare favorably 
with values of accumulation obtained 
by other observers who used different 
measuring techniques (5). The calcula- 
tion of ice ages carries some qualifica- 
tions. It has been necessary to assume 
an ice thickness that is constant and a 
vertical strain rate that remains un- 
changed. Further, no allowance can be 
made for possible changes in accumula- 
tion rates with past climatological varia- 
tions. Ages near the bottom are the least 
reliable because of extreme thinning by 
flow. The calculations were made inde- 
pendently by A.J.G., largely before he 
had knowledge of the isotope variations. 
Our confidence in the results is buoyed 
by the age (11,000 years) calculated 
for samples at a depth of 1050 m. 

The significance of the isotope curves 
is that they reflect the relative tempera- 
tures at which the water substance com- 
posing the samples was condensed. A 
lower-that is, a more negative-8180 
or 8D value represents a lower tempera- 
ture. Readers should note that the plot 
(Fig. 1) is linear for depth but not for 
age; age increases at an accelerating 
rate with depth. The data below a depth 
of 1000 m are plotted against time in 

:Fig. 2. 

Only the uppermost part of the ice 

underlying Byrd Station originates from 
snow accumulating in the immediate 
vicinity. With increasing depth, the ice 
comes from increasingly remote and 

higher sources. Present terrain configu- 
ration and location of the ice divide 
suggest that none of the ice under Byrd 
Station is likely to have accumulated 
in environments more than 300 m 

higher or 2? to 3?C colder than Byrd 
Station. The gradual decrease in 8180 
values between depths of 100 and 1050 
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