
surement at a level of technological 
sophistication quite beyond the present 
level and beyond that proposed for 
routine monitoring. Access to some- 
body's monitoring system, or to a few 
years of ship time, will not suffice to 
obtain the kind of information the 
scientist needs about the oceanic veloc- 
ity field. Some carefully designed mea- 
surement programs are going to be 
needed-on a scale larger than an 
oceanographic institution can manage 
but smaller than the space program. To 
be useful scientifically, these programs 
will have to give first priority to ques- 
tions of hydrodynamics. To date there 
is little indication that they will do so. 
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Man's Oxygen Reserves 

Claims that this important resource is in 

danger of serious depletion are not at all valid. 
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In almost all grocery lists of man's 
environmental problems is found an 
item regarding oxygen supply. Fortu- 
nately for mankind, the supply is not 
vanishing as some have predicted. There 
are hundreds of other ways that we will 
hazard the future of our descendants 
before we make a small dent in our 
oxygen supply. A few basic facts will 
make clear why this is the case. 

First of all, each square meter of 
earth surface is covered by 60,000 
moles of oxygen gas (1). Plants living 
in both the ocean and on land produce 
annually -about 8 moles of oxygen per 
square meter of earth surface (2). Ani- 
mals and bacteria destroy virtually all 
of the products of this photosynthetic 
activity; hence they devour an amount 
of oxygen nearly identical to that gen- 
erated by plants. If we use the rate at 
which organic carbon enters the sedi- 
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ments of the ocean as a measure of the 
amount of the photosynthetic product 
preserved each year we find that it is 
about 3 X 10-3 mole of carbon per 
square meter per year (3). Thus animals 
and bacteria are destroying all but 4 
parts in 10,000 of the oxygen generated 
each year. The net annual oxygen pro- 
duction corresponds to about 1 part in 
15 million of the oxygen present in the 
atmosphere. In all likelihood even this 
small amount of oxygen is being de- 
stroyed through the oxidation of the 
reduced carbon, iron, and sulfur being 
exposed each year to weathering pro- 
cesses. Thus, in its natural state the oxy- 
gen content of our atmosphere is ex- 
ceedingly well buffered and virtually 
immune to change on a short time scale 
(that is, 100 to 1000 years). 

Man has recovered altogether about 
1016 moles of fossil carbon from the 
earth's sedimentary rocks (4). The fuels 
bearing this carbon have been com- 
busted as a source of energy. The car- 
bon dioxide produced as a by-product 
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of this enterprise is equal in amount to 
18 percent of the carbon dioxide con- 
tained in our atmosphere (5). Roughly 
2 moles of atmospheric oxygen was re- 
quired to liberate each mole of this car- 
bon dioxide from its fossil fuel source. 
By so doing we have used up only 7 
out of every 10,000 oxygen molecules 
available to us (6). If we continue to 
burn chemical fuels at our currently 
accelerating rate (5 percent per year), 
then by the year 2000 we shall have 
consumed only about 0.2 percent of the 
available oxygen (20 molecules in every 
10,000) (7). If we were to burn all 
known fossil fuel reserves we would use 
less than 3 percent of the available oxy- 
gen. Clearly a general depletion of the 
atmospheric oxygen supply via the con- 
sumption of fossil fuels is not possible 
in the foreseeable future. 

Even in a large urban center oxygen 
depletion is a second-order problem. 
For examples, auto exhausts contain 
about one molecule of carbon monoxide 
for each ten molecules of carbon di- 
oxide (8). Continuous exposure to car- 
bon monoxide contents of 100 parts 
per million creates serious physiological 
problems (9). If automobiles account 
for 50 percent of the total oxygen de- 
mand in an urban area, carbon monox- 
ide would reach the critical level before 
the oxygen content of the air had 
dropped by 2 percent (10). 

There has been considerable refer- 
ence to man's alteration of photosyn- 
thetic rates and the resulting change in 
the oxygen content of the atmosphere. 
From the above it should be clear that 
the oxygen supply is immune to such 
changes. The extreme case makes this 
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point. What would happen if all photo- 
synthetic activity were to cease and ani- 
mals and bacteria were to destroy the 
organic debris in existing living tissue 
and in the humus stored in soils and the 
sea? There is roughly 200 moles of car- 
bon per square meter of earth surface 
available in this form (11). Complete 
oxidation would require only a fraction 
of 1 percent of atmospheric oxygen. 
Although changes in the rate of pri- 
mary photosynthesis are certainly criti- 
cal to man's food resources, they have 
no bearing on his oxygen supply. 

The situation with regard to our nat- 
ural waters is quite different. There is 
no doubt that the high oxygen demand 
of organic and inorganic material added 
to our lakes and streams has, in many 
cases, reduced the standing level of 
oxygen in these waters below that re- 
quired by fish and other aerobic orga- 
nisms. Although the oxygen content of 
the atmosphere is immutable, the finite 
invasion rates of this gas into natural 
waters often cannot meet the high de- 
mands generated by man's pollutants. 
A disproportionate amount of the pho- 
tosynthetic product is being dumped 
into these very limited reservoirs. 

Were man to dump all his sewage 
into the deep sea would he endanger the 
oxygen supply of this vast reservoir? If 
spread over the entire earth, this reser- 
voir would have a mean depth of about 
2500 meters. The oxygen content of 
this water averages about 2.5 cm3 at 
standard temperature and pressure per 
liter (0.1 mole/m3) (12). Hence, for 
each square meter of earth surface, we 
have available in the deep sea about 
250 moles of oxygen gas. Since the 
oxygen content of the waters in the 
deep sea is renewed with a time con- 
stant of about 1000 years on a time 
scale of decades, this reservoir can be 
considered static (13). To gain a feeling 
for the magnitude of this oxygen reser- 
voir, let us first consider how long the 
reservoir would last if the entire 

terrestrial photosynthetic product were 
dumped each year into the deep sea. 
The annual oxygen demand of this ma- 
terial would be about 5 mole/m2 of 
earth surface (2). Thus our supply of 
deep-sea oxygen would last 50 years. 
If we limit the input to the waste prod- 
ucts of 1 billion people, each contrib- 
uting 100 kilograms of dry organic 
waste per year, this consumption would 
use only 0.01 mole of oxygen per square 
meter of earth surface (14). At this rate 
of usage, the oxygen supply in the deep 
sea would last 25,000 years. 

In conclusion it can be stated with 
some confidence that the molecular oxy- 
gen supply in the atmosphere and in the 
broad expanse of open ocean are not 
threatened by man's activities in the 
foreseeable future. Molecular oxygen is 
one resource that is virtually unlimited. 
If man's existence is to be threatened by 
pollution of the environment he will 
succumb to some other fate long before 
his oxygen supply is seriously depleted. 
We are faced with so many real en- 
vironmental crises that there is no need 
to increase the public concern by bring- 
ing out bogeymen. Hopefully the pop- 
ular press will bury the bogeyman it 
created. 
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