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Amphetamine: Differentiation by d and 1 Isomers of 

Behavior Involving Brain Norepinephrine or Dopamine 

Abstract. d-Amphetamine is markedly more potent an inhibitor of catechol- 
amine uptake by norepinephrine neurons in the brain than is 1-amphetamine, 
whereas the two isomers are equally active in inhibiting catecholamine uptake by 
the dopamine neurons of the corpus striatum. In behavioral studies, d-ampheta- 
mine is ten times as potent as 1-amphetamine in enhancing locomotor activity, 
while it is only twice as potent in eliciting a compulsive gnawing syndrome. This 
suggests that the locomotor stimulation induced by amphetamine involves central 
norepinephrine, while dopamine neurons play an important role in the induced 
compulsive gnawing behavior. Assessment of differential actions of d- and 
1-amphetamine may be an efficient method to differentiate behaviors involving 
norepinephrine or dopamine in the brain. 
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The behavioral effects of many drugs 
are thought to involve the catechol- 
amines norepinephrine or dopamine in 
the central nervous system. Investi- 
gators have had only limited success 
in ascertaining whether particular ef- 
fects are attributable to interactions 
with norepinephrine or dopamine, or 
both (1). By comparing and contrast- 
ing the biochemical and behavioral 
actions of d- and /-amphetamine, we 
have developed a method for the dif- 
ferentiation of behaviors mediated by 
norepinephrine or dopamine. 

Amphetamine produces several types 
of behavioral effects in animals. It en- 
hances locomotor activity, an action 
which may be a model for the central 
stimulant effects of amphetamine in 
man, and it provokes a compulsive 
gnawing sydrome. Both of these ac- 
tions are thought to involve dopamine 
or norepinephrine, or both. Some 
studies implicate the corpus striatum, 
an area which contains the bulk of 
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gnawing sydrome. Both of these ac- 
tions are thought to involve dopamine 
or norepinephrine, or both. Some 
studies implicate the corpus striatum, 
an area which contains the bulk of 

brain dopamine, in mediating the com- 

pulsive gnawing syndrome (2). Al- 

though indirect evidence suggests that 

norepinephrine tracts are important 
in effecting the enhancement of loco- 
motor activity by amphetamine (3), 
some workers have favored a pre- 
ponderant role for dopamine in elicit- 
ing this behavior (4). 

Brain dopamine and norepinephrine 
are stored in distinct neuronal tracts 
(5). The corpus striatum contains very 
high concentrations of dopamine and 
low concentrations of norepinephrine, 
while in most other brain regions nor- 
epinephrine is the predominant cate- 
cholamine. In nonstriatal brain regions, 
d-amphetamine is ten times as potent as 
i-amphetamine in inhibiting catechol- 
amine uptake by synaptosomes (pinched 
off nerve endings), while in the corpus 
striatum the two amphetamine isomers 
are equally active (6). This uptake 
system is thought to reflect reuptake 
of catecholamine released at synapses 
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Table 1. Inhibition of [3H]norepinephrine uptake into different regions of rat brain by d- and 
i-amphetamine. Rats were given prior treatment with d- or i-amphetamine (10 mg/kg; sub- 
cutaneously) 1 hour before the intraventricular injection of 20 Ac (20 II) of [3H]norepineph- 
rine. All rats were decapitated 5 minutes after the administration of i[H)norepinephrine; 
their brains were removed and dissected; and concentrations of endogenous and [3Hlnorepi- 
nephrine were determined. Control animals received 0.9 percent sodium chloride solution in 
place of amphetamine. Each value is the mean ? S.E.M. for eight rats. 

Endogenous Endogenous [ pin i 
Treatmelnt norepinephrine dopamine ( tn ~Lg/g) (/g/g) (count min-1 g-') X 104 (ggxg/g) 

Striatum 
Saline 0.09 ? .01 4.44 ? .25 159 ? 4 
d-Amphetamine 0.08 ? .01 4.36 ? .30 79 ? 6* 
I-Amphetamine 0.09 ? .01 4.69 ? .32 86 ? 4* 

Thalamus-hypothalamus-midbrain 
Saline 0.61 ? .03 221 ? 9 
d-Amphetamine 0.44 ? .04* 160 ? 8* 
I-Amphetamine 0.59 ? .03 211 - 12 

Cerebellum 
Saline 0.35 ? .01 383 ? 17 
d-Amphetamine 0.20 ? .01 * 198 - 23* 
I-Amphetamine 0.33 ? .01 348 - 20 

Brainstem 
Saline 0.42 ? .04 160 ? 27 
d-Amphetamine 0.33 ? .02t 99 ? 23t 
I-Amphetamine 0.44 ? .02 160 - 27 

? P<.001. t P<.05. 

in the brain accounting for the inacti- 
vation of synaptically released amine 
(7). Drugs that inhibit catecholamine 
uptake should potentiate its synaptic 
actions so that d-amphetamine should 
be markedly more active than i-amphet- 
amine at synapses of norepinephrine 
while the two isomers would be equal 
at synapses of dopamine. According- 
ly, behavior mediated by brain nor- 
epinephrine might be affected con- 
siderably more by d-amphetamine than 
by i-amphetamine, whereas behavior 
mediated by dopamine should be af- 
fected similarly by the two isomers. 
We have confirmed by experiments in 
vivo the differential action of d- and 

i-amphetamine on catecholamine up- 
take by several nonstriatal brain re- 

gions and the equal activity of the two 
isomers in the striatum. We also report 
that d-amphetamine is ten times as 
potent as /-amphetamine in enhancing 

locomotor activity, while it is only 
twice as active in provoking compulsive 
gnawing behavior. 

We used male Sprague-Dawley rats 
(150 to 200 g). For biochemical 
studies rats were given injections of 1- 
[3H]-norepinephrine (20 ,uc in 20 tl of 
Merles solution; 2.3 c/mmole; Amer- 
sham Searle) into the left lateral ven- 
tricle. Rats were decapitated after 5 
minutes and their brains removed; the 
brains were dissected into different re- 
gions, and the concentrations of triti- 
ated and endogenous norepinephrine 
were determined in each region (8). 
The rats were injected subcutaneously 
with 10 mg of d- or i-amphetamine per 
kilogram of body weight 1 hour before 
the administration of [3H]norepineph- 
rine. 

For behavior studies, rats were given 
prior treatment with iproniazid (150 
mg/kg), injected intraperitoneally 16 

Table 2. Effects of d- and i-amphetamine on locomotor activity and compulsive gnawing 
behavior of rats. Rats were given prior treatment with iproniazid (150 mg/kg; intraperi- 
toneally), and were then placed in individual photocell activity cages for 30 minutes before 
the injection of amphetamine. Five minutes after amphetamine was injected, locomotor ac- 
tivity was recorded for 30 minutes. Compulsive gnawing behavior was assessed every 30 
minutes as an all or none effect (see text). The number of rats exhibiting compulsive gnawing 
behavior and locomotor activity after being treated with d- or i-amphetamine, expressed 
as percentage of maximum response, was plotted against the amphetamine dose on log-probit 
graph paper (16). The effective dose (ED-50 ? S.E.M.) for both types of behavior was 
calculated from this graph as the dose that produced 50 percent of maximum enhancement 
of locomotor activity or produced compulsive gnawing behavior in 50 percent of the rats. 

Effective dose (ED-50) 

Compound Dose range Animals Locomotor Compulsive Compound Locomotor (mg/kg) (No.) activity gnawing 
_(mig/kg^) 5behavior 

(mg/kg) (mg/kg) 

d-Amphetamine 0.1 to 20 84 0.9 ? 0.2 2.1 ? 0.4 
/-Amphetamine 0.1 to 20 96 8.8 ? 0.9* 4.4 ? 0.9t 

* Differs from d-amphetamine, P < .001. f Differs from d-amphetamine, .05 <P < .1. 

1488 

hours before the administration of 
amphetamine; iproniazid inhibits mono- 
amine oxidase and thus facilitates the 
production of compulsive gnawing be- 
havior (2). Control animals were in- 
jected with 0.9 percent NaCi. Rats in- 
jected with iproniazid alone did not 
differ from controls in locomotor ac- 
tivity and showed no evidence of com- 
pulsive gnawing behavior. 

In behavioral studies rats were kept 
in individual cages with a wire grid 
floor and equipped with a light source 
and a photocell connected to a digital 
counter. Activity was measured as the 
number of times that a rat crossed 
the beam of light during a 30-minute 
session. Rats were placed in these 
cages 30 minutes before administration 
of amphetamine, and photocell record- 
ings were initiated 5 minutes after in- 
jection of amphetamine. Compulsive 
gnawing behavior was assessed every 
30 minutes after drug treatment. The 
compulsive gnawing syndrome was 
considered to be present when the 
rats were gnawing, chewing, or licking 
the grid floor of the activity cage, and 
when, after the rats were lifted from 
the grid and then replaced, they re- 
sumed gnawing within 10 seconds (9). 
At different doses total gnawing be- 
havior was scored as the number of 
rats in groups of six that exhibited 

gnawing behavior. No attempt was 
made to "grade" the "degree of gnaw- 
ing" or to score sniffing or stereotyped 
movements associated with this syn- 
drome, because such scoring was mark- 

edly susceptible to observational errors. 
For behavioral studies, groups of six 
rats received amphetamine at 15 dose 
concentrations from 0.1 to 20 mg/kg. 
Each group of rats received only one 
dose of amphetamine, and a total of 
180 rats were used. 

In the cerebellum, the hypothalamus, 
thalamus, and midbrain, and the brain- 

stem, d-amphetamine caused a marked 
reduction in the accumulation of the 

[3H]norepinephrine while i-amphet- 
amine had no effect (Table 1). Be- 
cause rats were killed soon (5 minutes) 
after injection of [3H]norepinephrine, 
the effect of amphetamine on amine 
accumulation is probably related to 
inhibition of neuronal membrane up- 
take rather than to effects on granular 
retention or amine release (10). d- 

Amphetamine but not /-amphetamine 
lowered endogenous norepinephrine 
concentration in these areas. In the 

corpus striatum, however, both d- and 

/-amphetamine caused marked reduc- 
tions in accumulation of [3H]norepi- 
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nephrine without affecting endogenous 
dopamine or norepinephrine concen- 
trations (Table 1). These findings con- 
firm in vivo our earlier findings in 
vitro that in nonstriatal synaptosomes 
d-amphetamine is a much more potent 
inhibitor of catecholamine accumulation 
than is I-amphetamine. We also con- 
firm in vivo that d- and I-amphetamine 
inhibit to the same degree the accumu- 
lation of catecholamines into striatal 
synaptosomes. 

d-Amphetamine was ten times as 
potent as i-amphetamine in enhancing 
locomotor activity (Table 2). With in- 

creasing doses of amphetamine there 
was an enhancement of locomotor ac- 

tivity up to a dose of 1.5 mg of d- 
amphetamine per kilogram or a dose 
of 12 mg of l-amphetamine per kilo- 

gram. After these doses of d- or 1- 
amphetamine, equal peak locomotor 
activity was recorded. Further in- 
creases in dose resulted in decreased 
locomotor activity. This tenfold differ- 
ence between the potency of the two 
isomers on locomotor activity closely 
parallels the tenfold difference of their 
potency in inhibiting catecholamine up- 
take by cerebral cortical synaptosomes 
(6). 

There have been many theories to 

explain the stimulant action of.the am- 
phetamines in the brain, including syn- 
aptic release of norepinephrine (11), 
inhibition of its reuptake (12), inhibi- 
tion of monoamine oxidase (13) and 
direct action on receptors (14). Our re- 
sults suggest that inhibition of nor- 
epinephrine uptake may be a major 
mechanism of action. We also found 
that d-amphetamine was much more 
potent than the i-isomer in lowering 
endogenous norepinephrine concentra- 
tions. Because the doses of i-ampheta- 
mine required to decrease norepineph- 
rine concentrations would be toxic, 
it is not possible to compare the po- 
tencies of d- and I-amphetamine in 
decreasing brain norepinephrine; there- 
fore we cannot rule out the possibility 
that there also exists a close relation 
between the differential potency of d- 
and i-amphetamine in depleting nor- 
epinephrine and in stimulating loco- 
motor activity, respectively. It is also 
unclear whether norepinephrine deple- 
tion is a result of inhibition of reup- 
take or is due to synaptic release of 
catecholamine by amphetamine. 
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amphetamine, equal peak locomotor 
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creases in dose resulted in decreased 
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phetamines in the brain, including syn- 
aptic release of norepinephrine (11), 
inhibition of its reuptake (12), inhibi- 
tion of monoamine oxidase (13) and 
direct action on receptors (14). Our re- 
sults suggest that inhibition of nor- 
epinephrine uptake may be a major 
mechanism of action. We also found 
that d-amphetamine was much more 
potent than the i-isomer in lowering 
endogenous norepinephrine concentra- 
tions. Because the doses of i-ampheta- 
mine required to decrease norepineph- 
rine concentrations would be toxic, 
it is not possible to compare the po- 
tencies of d- and I-amphetamine in 
decreasing brain norepinephrine; there- 
fore we cannot rule out the possibility 
that there also exists a close relation 
between the differential potency of d- 
and i-amphetamine in depleting nor- 
epinephrine and in stimulating loco- 
motor activity, respectively. It is also 
unclear whether norepinephrine deple- 
tion is a result of inhibition of reup- 
take or is due to synaptic release of 
catecholamine by amphetamine. 
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greater similarity of the two ampheta- 
mine isomers in eliciting gnawing than 
in stimulating locomotor activity, to- 

gether with biochemical evidence in 
vivo and in vitro, of effects of the two 
isomers on uptake of catecholamine 
in the corpus striatum, suggests that 

gnawing behavior is related to an ac- 
tion of amphetamine on striatal dopa- 
mine neurons. Presumably, if gnawing 
were determined solely by dopamine 
tracts, d- and i-amphetamine should 
have been equal in their effects. The 
twofold difference in potency of these 
isomers indicates that norepinephrine 
neurons may participate to a limited 
extent in production of this behavior, 
possibly as a triggering mechanism. 

Because there are a large number 
of norepinephrine-containing tracts in 
the brain, pharmacologic criteria, such 
as the different potencies of d- and 

i-amphetamine in producing locomotor 
stimulation, cannot readily delineate 
which isomer is involved in eliciting a 

given behavior. By contrast, there are 

only a few dopamine-containing tracts 
in the brainstem. Besides the nigrostri- 
atal tract, which appears to be related 
to the gnawing behavior induced by 
amphetamine, other dopamine tracts 

arising in the brainstem have terminals 
in the olfactory tubercle and the nu- 
cleus accumbens (5). A dopaminergic 
tract originating in the arcuate nucleus 
of the hypothalamus and terminating in 
the median eminence has beeen im- 

plicated in regulating the synthesis and 
release of pituitary trophic hormones 
(15). Experiments with d- and i-am- 
phetamine may help to elucidate the 
functions of these tracts. 
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ings is depressed, whereas thresholds 
to and apparent contrast of gratings dif- 

fering in orientation or size remain 

unchanged (1). This is called adapta- 
tion, and indicates that different popu- 
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Neural Symbolic Activity: A Psychophysical Measure 

Abstract. When a subject views a grating which is partially blocked from view 
by a cube, adaptation (decrease in contrast of the grating) occurs not only to the 
visible portions of the grating, but also to those portions blocked from view. This 
may indicate the existence of a neural mechanism which conveys the information 
"in back of." 
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